# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import paddle import paddle.distributed.fleet as fleet import paddle.distributed.fleet.base.role_maker as role_maker import os import paddle.fluid as fluid class TestFleetBase(unittest.TestCase): def setUp(self): os.environ["POD_IP"] = "127.0.0.1" os.environ["PADDLE_TRAINER_ENDPOINTS"] = "127.0.0.1:36001" os.environ["PADDLE_TRAINERS_NUM"] = "2" os.environ["PADDLE_PSERVERS_IP_PORT_LIST"] = \ "127.0.0.1:36001,127.0.0.2:36001" def test_init(self): role = role_maker.PaddleCloudRoleMaker(is_collective=True) fleet.init(role) def test_is_first_worker(self): role = role_maker.PaddleCloudRoleMaker(is_collective=True) fleet.init(role) if fleet.is_first_worker(): print("test fleet first worker done.") def test_worker_index(self): role = role_maker.PaddleCloudRoleMaker(is_collective=True) fleet.init(role) print(fleet.worker_index()) def test_worker_num(self): role = role_maker.PaddleCloudRoleMaker(is_collective=True) fleet.init(role) print(fleet.worker_num()) def test_is_worker(self): role = role_maker.PaddleCloudRoleMaker(is_collective=True) fleet.init(role) if fleet.is_worker(): print("test fleet is worker") def test_worker_endpoints(self): role = role_maker.PaddleCloudRoleMaker(is_collective=True) fleet.init(role) print(fleet.worker_endpoints(to_string=True)) def test_server_num(self): role = role_maker.PaddleCloudRoleMaker(is_collective=True) fleet.init(role) if fleet.is_server(): print("fleet server num: {}".format(fleet.server_num())) def test_server_index(self): role = role_maker.PaddleCloudRoleMaker(is_collective=True) fleet.init(role) if fleet.is_server(): print("fleet server index: {}".format(fleet.server_index())) def test_server_endpoints(self): role = role_maker.PaddleCloudRoleMaker(is_collective=True) fleet.init(role) if fleet.is_server(): print("fleet server index: {}".format( fleet.server_endpoints(to_string=True))) def test_is_server(self): role = role_maker.PaddleCloudRoleMaker(is_collective=True) fleet.init(role) if fleet.is_server(): print("test fleet is server") def test_util(self): role = role_maker.PaddleCloudRoleMaker(is_collective=True) fleet.init(role) self.assertEqual(fleet.util, None) def test_barrier_worker(self): role = role_maker.PaddleCloudRoleMaker(is_collective=True) fleet.init(role) if fleet.is_worker(): fleet.barrier_worker() def test_init_worker(self): role = role_maker.PaddleCloudRoleMaker(is_collective=True) fleet.init(role) if fleet.is_worker(): fleet.init_worker() def test_run_server(self): role = role_maker.PaddleCloudRoleMaker(is_collective=True) fleet.init(role) if fleet.is_worker(): fleet.run_worker() def test_stop_worker(self): role = role_maker.PaddleCloudRoleMaker(is_collective=True) fleet.init(role) if fleet.is_worker(): fleet.stop_worker() def test_distributed_optimizer(self): role = role_maker.PaddleCloudRoleMaker(is_collective=True) fleet.init(role) optimizer = paddle.optimizer.SGD(learning_rate=0.001) optimizer = fleet.distributed_optimizer(optimizer) def test_exception(self): import paddle.distributed.fleet as fleet self.assertRaises(Exception, fleet.init_worker) if __name__ == "__main__": unittest.main()