# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and import logging import os import paddle import paddle.fluid as fluid import paddle.fluid.io as io import paddle.fluid.transpiler.distribute_transpiler as dist_transpiler from paddle.fluid.compiler import CompiledProgram from paddle.fluid.executor import Executor from paddle.fluid.framework import Program from paddle.fluid.incubate.checkpoint.checkpoint_saver import ( CheckpointSaver, PaddleModel, ) from paddle.incubate.distributed.fleet.base import ( DistributedOptimizer, Fleet, Mode, ) class Collective(Fleet): def __init__(self): super().__init__(Mode.COLLECTIVE) self._local_ip = 0 self.startup_program = None self._origin_program = None self._transpiled_program = None self.main_program = None self._checkpoint_prefix = "__paddle_fleet_checkpoint__" self._param_file_name = "_paddle_fleet_param__" def init_worker(self): logging.warn( "You should not call 'init_worker' method for collective mode." ) def run_worker(self, main_programs=None, scopes=None): logging.warn( "You should not call 'run_worker' method for collective mode." ) def init_server(self, model_dir=None): logging.warn( "You should not call 'init_server' method for collective mode." ) def run_server(self): logging.warn( "You should not call 'run_server' method for collective mode." ) def stop_worker(self): logging.warn( "You should not call 'stop_worker' method for collective mode." ) def distributed_optimizer(self, optimizer, strategy=None): self._optimizer = CollectiveOptimizer(optimizer, strategy) return self._optimizer def save_inference_model( self, executor, dirname, feeded_var_names=None, target_vars=None, main_program=None, export_for_deployment=True, ): """ Prune the given `main_program` to build a new program especially for inference, and then save it and all related parameters to given `dirname` by the `executor`. """ assert isinstance(executor, Executor), ( "In fleet.save_inference_model() function, executor must be as" " Executor type." ) if main_program is None: main_program = self._origin_program assert isinstance(main_program, Program), ( "In fleet.save_inference_model() function, main_program " "must be as Program type." ) io.save_inference_model( dirname, feeded_var_names, target_vars, executor, main_program, None, None, export_for_deployment, ) def save_persistables( self, executor, dirname, main_program=None, filename=None ): """ This function filters out all variables with `persistable==True` from the give `main_program` and then saves these variables to the folder `dirname` or file `filename`. The `dirname` is used to specify the folder where persistable variables are going to be saved. If you would like to save variables in separate files, set `filename` None; if you would like to save all variables in a single file, use `filename` to specify the file name. """ assert isinstance(executor, Executor), ( "In fleet.save_inference_model() function, executor must be as" " Executor type." ) if main_program is None: main_program = self._origin_program assert isinstance(main_program, Program), ( "In fleet.save_inference_model() function, main_program " "must be as Program type." ) paddle.distributed.io.save_persistables( executor, dirname, main_program, filename=filename ) def save_checkpoint( self, executor, path, trainer_id, train_status, fs, main_program=None, local_cache_path=".cache", remain_all_checkpoint=True, ): """ This function save persistables and current epoch num to path. """ if main_program is None: main_program = self._transpiled_program m = PaddleModel(executor, main_program) t = train_status c = CheckpointSaver(fs) real_path, checkpoint_no = c.save_checkpoint( path=path, slists=[m, t], trainer_id=trainer_id, local_cache_path=local_cache_path, ) if not remain_all_checkpoint: c.clean_redundant_checkpoints(path) return real_path, checkpoint_no def load_checkpoint( self, executor, path, trainer_id, train_status, fs, main_program=None, local_cache_path=".cache", ignore_empty=True, ): """ This function load persistables and current epoch num from path. """ if main_program is None: main_program = self._transpiled_program m = PaddleModel(executor, main_program) c = CheckpointSaver(fs) return c.load_checkpoint( path, [m, train_status], trainer_id=trainer_id, ignore_empty=ignore_empty, local_cache_path=local_cache_path, ) fleet = Collective() class DistributedStrategy(fluid.BuildStrategy): """ Init function of DistributedStrategy """ def __init__(self): super().__init__() self.use_local_sgd = False self.use_dist_fc = False self.dist_fc_config = None # DistFCConfig self.mode = "nccl2" # or collective self.collective_mode = None # local_sgd or grad_allreduce self.nccl_comm_num = 1 self.forward_recompute = False # use RecomputeOptimizer self.recompute_checkpoints = [] self.use_amp = False # use mixed precision optimizer self.amp_loss_scaling = 2**15 self.exec_strategy = fluid.ExecutionStrategy() # configurations below are used for unit test self._ut4grad_allreduce = False class CollectiveOpBasedOptimizer(DistributedOptimizer): """ Collective Operator Base Class For Distributed Optimizer The class is invisible to a user """ def __init__(self, optimizer, strategy=None): assert isinstance( strategy, DistributedStrategy ), "strategy must be DistributedStrategy" super().__init__(optimizer, strategy) def backward( self, loss, startup_program=None, parameter_list=None, no_grad_set=None, callbacks=None, ): return self._optimizer.backward( loss, startup_program, parameter_list, no_grad_set, callbacks ) def apply_gradients(self, params_grads): return self._optimizer.apply_gradients(params_grads) class CollectiveOptimizer(DistributedOptimizer): """ DistributedOptimizer is a wrapper for paddle.fluid.optimizer A user should pass a paddle.fluid.optimizer to DistributedOptimizer minimize() function is implemented. DistributedOptimizer is the starting point for a user who wants to run distributed training. The optimized information will be stored in Fleet() instance who holds the global information about current distributed training. """ def __init__(self, optimizer, strategy=DistributedStrategy()): if strategy is None: strategy = DistributedStrategy() super().__init__(optimizer, strategy) self._forward_recompute = strategy.forward_recompute if not isinstance(strategy.recompute_checkpoints, list): raise ValueError( "DistStrategy.recompute_checkpoints should" "be a List" ) self._recompute_checkpoints = strategy.recompute_checkpoints self._use_amp = strategy.use_amp self._amp_loss_scaling = strategy.amp_loss_scaling self.print_config = False def backward( self, loss, startup_program=None, parameter_list=None, no_grad_set=None, callbacks=None, ): return self._optimizer.backward( loss, startup_program, parameter_list, no_grad_set, callbacks ) def apply_gradients(self, params_grads): return self._optimizer.apply_gradients(params_grads) def _check_condition(self, name, **kwargs): for k, v in kwargs.items(): if v is True: assert False, "you can't use %s and %s together" % (name, k) def _check_collective_mode(self, main_program, optimizer, strategy): """ Check the conflict conditions. """ if strategy.use_local_sgd: strategy.mode = "collective" strategy.collective_mode = "local_sgd" self._check_condition( "use_local_sgd", use_dgc=main_program._enable_dgc, use_dist_fc=strategy.use_dist_fc, use_lamb=main_program._use_lamb, ) if strategy.use_dist_fc: self._check_condition( "use_dist_fc", use_dgc=main_program._enable_dgc, use_local_sgd=strategy.use_local_sgd, use_lamb=main_program._use_lamb, ) assert ( strategy.dist_fc_config is not None ), "DistributedStrategy.dist_fc_config should be set" if strategy._ut4grad_allreduce: strategy.mode = "collective" strategy.collective_mode = "grad_allreduce" self._check_condition( "_ut4grad_allreduce", use_dgc=main_program._enable_dgc, use_lamb=main_program._use_lamb, ) if ( self._strategy.collective_mode == "local_sgd" or self._strategy.collective_mode == "grad_allreduce" ): assert ( self._strategy.mode == "collective" ), "local_sgd and grad_allreduce can be used under collective mode" def _transpile(self, startup_program, main_program): """ Transpile the programs to distributed programs. And add the variables. """ worker_endpoints = fleet.worker_endpoints() trainer_id = fleet.worker_index() current_endpoint = fleet.worker_endpoints()[trainer_id] worker_endpoints_env = ','.join(worker_endpoints) trainers_num = fleet.worker_num() if self.print_config: print( "worker_endpoints:{} trainers_num:{} current_endpoint:{} \ trainer_id:{}".format( worker_endpoints, trainers_num, current_endpoint, trainer_id ) ) # call transpiler config = dist_transpiler.DistributeTranspilerConfig() config.mode = self._strategy.mode config.collective_mode = self._strategy.collective_mode config.nccl_comm_num = self._strategy.nccl_comm_num config.use_hierarchical_allreduce = ( self._strategy.use_hierarchical_allreduce ) config.hierarchical_allreduce_inter_nranks = ( self._strategy.hierarchical_allreduce_inter_nranks ) t = dist_transpiler.DistributeTranspiler(config=config) t.transpile( trainer_id=trainer_id, trainers=worker_endpoints_env, startup_program=startup_program, program=main_program, current_endpoint=current_endpoint, ) def _get_node_ips_from_endpoints(self, endpoints): ss = set() ips = [] for ep in endpoints: ip = ep.split(":")[0].strip() if ip not in ss: ss.add(ip) ips.append(ip) else: continue return ips def _node_num(self): worker_endpoints = fleet.worker_endpoints() current_endpoint = fleet.worker_endpoints()[fleet.worker_index()] worker_endpoints_env = ','.join(worker_endpoints) node_ips = self._get_node_ips_from_endpoints(worker_endpoints) node_ip = current_endpoint.split(":")[0].strip() node_num = len(node_ips) return node_num def _try_to_compile(self, startup_program, main_program): node_num = self._node_num() assert node_num >= 1, "nccl2 node_num must >= 1, now:{}" % node_num exec_strategy = self._strategy.exec_strategy if node_num <= 1: if self._strategy.nccl_comm_num > 1: logging.warn("set nccl_comm_num=1 since you only have 1 node.") self._strategy.nccl_comm_num = 1 if self._strategy.use_hierarchical_allreduce: logging.warn( "set use_hierarchical_allreduce=False since you only have 1 node." ) self._strategy.use_hierarchical_allreduce = False sync_allreduce = os.getenv("FLAGS_sync_nccl_allreduce") if sync_allreduce is None or sync_allreduce == "1": exec_strategy.num_threads = self._strategy.nccl_comm_num + 1 if self._strategy.use_hierarchical_allreduce: exec_strategy.num_threads = 2 * self._strategy.nccl_comm_num + 1 if exec_strategy.num_threads > 4: logging.warn( "if you use use_hierarchical_allreduce or " "with multi nccl comm, please export FLAGS_sync_nccl_allreduce = 0" ) # NOTE. open sync_batch_norm will hang when use multi num_threads sync_batch_norm = self._strategy.sync_batch_norm if sync_batch_norm is not None and sync_batch_norm is True: self._strategy.nccl_comm_num = 1 self._strategy.use_hierarchical_allreduce = False exec_strategy.num_threads = 1 logging.warn( "use sync_batch_norm will hang when set num_threads > 1, so " "set num_threads=1, nccl_comm_num=1, use_hierarchical_allreduce=False." ) if self.print_config: print( "node_num:", node_num, "num_threads:", exec_strategy.num_threads, "use_hierarchical_allreduce:", self._strategy.use_hierarchical_allreduce, "nccl_comm_num:", self._strategy.nccl_comm_num, "FLAGS_sync_nccl_allreduce:", sync_allreduce, ) self._transpile(startup_program, main_program) if self._strategy.mode == "collective": return main_program self._strategy.num_trainers = fleet.worker_num() self._strategy.trainer_id = fleet.worker_index() self._strategy.trainers_endpoints = fleet.worker_endpoints() self._strategy.enable_backward_optimizer_op_deps = True self._compiled_program = CompiledProgram(main_program) self._compiled_program.with_data_parallel( loss_name=self._loss.name, build_strategy=self._strategy, exec_strategy=self._strategy.exec_strategy, share_vars_from=None, ) return self._compiled_program def raiseOptimizeError(self, strategy_name, optimize_name): raise ValueError( "can not use {0} when you set DistStrategy.{1} " "as True".format(optimize_name, strategy_name) ) def minimize( self, loss, startup_program=None, parameter_list=None, no_grad_set=None ): """ minimize a program through loss Args: loss (Variable|Variable List): loss variable or loss variable list to run optimization. startup_program (Program): startup_program for initializing parameters in `parameter_list`. parameter_list (list): list of Variables to update. no_grad_set (set|None): set of Variables should be ignored. Returns: tuple: (optimize_ops, params_grads) which are, list of operators appended; and list of (param, grad) Variables pair for optimization. Note that in parameter server mode, a worker will not get anything about optimize_os Because optimizer algorithms run on pserver side. We will make this usable in pserver process, but currently the optimization part is written into Fleet(). A user does not need to care about how to startup a pserver node. """ # check optimizer conflicts if self._forward_recompute: if self._recompute_checkpoints == []: raise ValueError( "please set strategy.recompute_checkpoints" "when set strategy.forward_recompute as True" ) if self._optimizer.__class__.__name__ in [ "RecomputeOptimizer", "OptimizerWithMixedPrecision", ]: self.raiseOptimizeError( "forward_recompute", self._optimizer.__class__.__name__ ) self._optimizer = fluid.optimizer.RecomputeOptimizer( self._optimizer ) self._optimizer._set_checkpoints(self._recompute_checkpoints) if self._use_amp: if self._optimizer.__class__.__name__ in [ "OptimizerWithMixedPrecision", "DGCMomentumOptimizer", ]: self.raiseOptimizeError( "mixed_precision", self._optimizer.__class__.__name__ ) self._optimizer = paddle.static.amp.decorate( self._optimizer, init_loss_scaling=self._amp_loss_scaling, use_dynamic_loss_scaling=True, ) main_program = loss.block.program if startup_program is None: startup_program = fluid.default_startup_program() fleet.startup_program = startup_program self._loss = loss self._check_collective_mode( main_program, self._optimizer, self._strategy ) optimize_ops, param_grads = self._optimizer.minimize( loss, startup_program, parameter_list, no_grad_set=no_grad_set ) fleet._origin_program = main_program.clone(for_test=False) fleet._transpiled_program = main_program fleet.main_program = self._try_to_compile(startup_program, main_program) return optimize_ops, param_grads