# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np from op_test import OpTest, skip_check_grad_ci import paddle import paddle.fluid.core as core import paddle.fluid as fluid from paddle.fluid import compiler, Program, program_guard from paddle.fluid.framework import convert_np_dtype_to_dtype_ class TestSumOp(OpTest): def setUp(self): self.op_type = "reduce_sum" self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")} self.outputs = {'Out': self.inputs['X'].sum(axis=0)} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') class TestSumOp5D(OpTest): def setUp(self): self.op_type = "reduce_sum" self.inputs = { 'X': np.random.random((1, 2, 5, 6, 10)).astype("float64") } self.outputs = {'Out': self.inputs['X'].sum(axis=0)} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') class TestSumOp6D(OpTest): def setUp(self): self.op_type = "reduce_sum" self.inputs = { 'X': np.random.random((1, 1, 2, 5, 6, 10)).astype("float64") } self.outputs = {'Out': self.inputs['X'].sum(axis=0)} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') class TestMeanOp(OpTest): def setUp(self): self.op_type = "reduce_mean" self.inputs = {'X': np.random.random((5, 6, 2, 10)).astype("float64")} self.attrs = {'dim': [1]} self.outputs = { 'Out': self.inputs['X'].mean(axis=tuple(self.attrs['dim'])) } def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') @skip_check_grad_ci( reason="reduce_max is discontinuous non-derivable function," " its gradient check is not supported by unittest framework.") class TestMaxOp(OpTest): """Remove Max with subgradient from gradient check to confirm the success of CI.""" def setUp(self): self.op_type = "reduce_max" self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")} self.attrs = {'dim': [-1]} self.outputs = { 'Out': self.inputs['X'].max(axis=tuple(self.attrs['dim'])) } def test_check_output(self): self.check_output() @skip_check_grad_ci( reason="reduce_min is discontinuous non-derivable function," " its gradient check is not supported by unittest framework.") class TestMinOp(OpTest): """Remove Min with subgradient from gradient check to confirm the success of CI.""" def setUp(self): self.op_type = "reduce_min" self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")} self.attrs = {'dim': [2]} self.outputs = { 'Out': self.inputs['X'].min(axis=tuple(self.attrs['dim'])) } def test_check_output(self): self.check_output() class TestProdOp(OpTest): def setUp(self): self.op_type = "reduce_prod" self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")} self.outputs = {'Out': self.inputs['X'].prod(axis=0)} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') class TestAllOp(OpTest): def setUp(self): self.op_type = "reduce_all" self.inputs = {'X': np.random.randint(0, 2, (5, 6, 10)).astype("bool")} self.outputs = {'Out': self.inputs['X'].all()} self.attrs = {'reduce_all': True} def test_check_output(self): self.check_output() class TestAllOpWithDim(OpTest): def setUp(self): self.op_type = "reduce_all" self.inputs = {'X': np.random.randint(0, 2, (5, 6, 10)).astype("bool")} self.attrs = {'dim': [1]} self.outputs = {'Out': self.inputs['X'].all(axis=1)} def test_check_output(self): self.check_output() class TestAllOpWithKeepDim(OpTest): def setUp(self): self.op_type = "reduce_all" self.inputs = {'X': np.random.randint(0, 2, (5, 6, 10)).astype("bool")} self.attrs = {'dim': [1], 'keep_dim': True} self.outputs = { 'Out': np.expand_dims( self.inputs['X'].all(axis=1), axis=1) } def test_check_output(self): self.check_output() class TestAllOpError(unittest.TestCase): def test_errors(self): with program_guard(Program(), Program()): # The input type of reduce_all_op must be Variable. input1 = 12 self.assertRaises(TypeError, fluid.layers.reduce_all, input1) # The input dtype of reduce_all_op must be bool. input2 = fluid.layers.data( name='input2', shape=[12, 10], dtype="int32") self.assertRaises(TypeError, fluid.layers.reduce_all, input2) class TestAnyOp(OpTest): def setUp(self): self.op_type = "reduce_any" self.inputs = {'X': np.random.randint(0, 2, (5, 6, 10)).astype("bool")} self.outputs = {'Out': self.inputs['X'].any()} self.attrs = {'reduce_all': True} def test_check_output(self): self.check_output() class TestAnyOpWithDim(OpTest): def setUp(self): self.op_type = "reduce_any" self.inputs = {'X': np.random.randint(0, 2, (5, 6, 10)).astype("bool")} self.attrs = {'dim': [1]} self.outputs = {'Out': self.inputs['X'].any(axis=1)} def test_check_output(self): self.check_output() class TestAnyOpWithKeepDim(OpTest): def setUp(self): self.op_type = "reduce_any" self.inputs = {'X': np.random.randint(0, 2, (5, 6, 10)).astype("bool")} self.attrs = {'dim': [1], 'keep_dim': True} self.outputs = { 'Out': np.expand_dims( self.inputs['X'].any(axis=1), axis=1) } def test_check_output(self): self.check_output() class TestAnyOpError(unittest.TestCase): def test_errors(self): with program_guard(Program(), Program()): # The input type of reduce_any_op must be Variable. input1 = 12 self.assertRaises(TypeError, fluid.layers.reduce_any, input1) # The input dtype of reduce_any_op must be bool. input2 = fluid.layers.data( name='input2', shape=[12, 10], dtype="int32") self.assertRaises(TypeError, fluid.layers.reduce_any, input2) class Test1DReduce(OpTest): def setUp(self): self.op_type = "reduce_sum" self.inputs = {'X': np.random.random(120).astype("float64")} self.outputs = {'Out': self.inputs['X'].sum(axis=0)} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') class Test2DReduce0(Test1DReduce): def setUp(self): self.op_type = "reduce_sum" self.attrs = {'dim': [0]} self.inputs = {'X': np.random.random((20, 10)).astype("float64")} self.outputs = {'Out': self.inputs['X'].sum(axis=0)} class Test2DReduce1(Test1DReduce): def setUp(self): self.op_type = "reduce_sum" self.attrs = {'dim': [1]} self.inputs = {'X': np.random.random((20, 10)).astype("float64")} self.outputs = { 'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim'])) } class Test3DReduce0(Test1DReduce): def setUp(self): self.op_type = "reduce_sum" self.attrs = {'dim': [1]} self.inputs = {'X': np.random.random((5, 6, 7)).astype("float64")} self.outputs = { 'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim'])) } class Test3DReduce1(Test1DReduce): def setUp(self): self.op_type = "reduce_sum" self.attrs = {'dim': [2]} self.inputs = {'X': np.random.random((5, 6, 7)).astype("float64")} self.outputs = { 'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim'])) } class Test3DReduce2(Test1DReduce): def setUp(self): self.op_type = "reduce_sum" self.attrs = {'dim': [-2]} self.inputs = {'X': np.random.random((5, 6, 7)).astype("float64")} self.outputs = { 'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim'])) } class Test3DReduce3(Test1DReduce): def setUp(self): self.op_type = "reduce_sum" self.attrs = {'dim': [1, 2]} self.inputs = {'X': np.random.random((5, 6, 7)).astype("float64")} self.outputs = { 'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim'])) } class TestKeepDimReduce(Test1DReduce): def setUp(self): self.op_type = "reduce_sum" self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")} self.attrs = {'dim': [1], 'keep_dim': True} self.outputs = { 'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']), keepdims=self.attrs['keep_dim']) } class TestReduceAll(Test1DReduce): def setUp(self): self.op_type = "reduce_sum" self.inputs = {'X': np.random.random((5, 6, 2, 10)).astype("float64")} self.attrs = {'reduce_all': True} self.outputs = {'Out': self.inputs['X'].sum()} ## reduction in multi dims class TestReduceMeanOpMultiAxises(OpTest): def setUp(self): self.op_type = "reduce_mean" self.inputs = {'X': np.random.random((5, 6, 2, 10)).astype("float64")} self.attrs = {'dim': [1, 2]} self.outputs = {'Out': self.inputs['X'].mean(axis=(1, 2))} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') @skip_check_grad_ci( reason="reduce_max is discontinuous non-derivable function," " its gradient check is not supported by unittest framework.") class TestReduceMaxOpMultiAxises(OpTest): """Remove Max with subgradient from gradient check to confirm the success of CI.""" def setUp(self): self.op_type = "reduce_max" self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")} self.attrs = {'dim': [-2, -1]} self.outputs = { 'Out': self.inputs['X'].max(axis=tuple(self.attrs['dim'])) } def test_check_output(self): self.check_output() @skip_check_grad_ci( reason="reduce_min is discontinuous non-derivable function," " its gradient check is not supported by unittest framework.") class TestReduceMinOpMultiAxises(OpTest): """Remove Min with subgradient from gradient check to confirm the success of CI.""" def setUp(self): self.op_type = "reduce_min" self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")} self.attrs = {'dim': [1, 2]} self.outputs = { 'Out': self.inputs['X'].min(axis=tuple(self.attrs['dim'])) } def test_check_output(self): self.check_output() class TestKeepDimReduceSumMultiAxises(OpTest): def setUp(self): self.op_type = "reduce_sum" self.inputs = {'X': np.random.random((5, 6, 10)).astype("float64")} self.attrs = {'dim': [-2, -1], 'keep_dim': True} self.outputs = { 'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']), keepdims=True) } def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') class TestReduceSumWithDimOne(OpTest): def setUp(self): self.op_type = "reduce_sum" self.inputs = {'X': np.random.random((100, 1, 1)).astype("float64")} self.attrs = {'dim': [1, 2], 'keep_dim': True} self.outputs = { 'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']), keepdims=True) } def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') class TestReduceSumWithNumelOne(OpTest): def setUp(self): self.op_type = "reduce_sum" self.inputs = {'X': np.random.random((100, 1)).astype("float64")} self.attrs = {'dim': [1], 'keep_dim': False} self.outputs = { 'Out': self.inputs['X'].sum(axis=tuple(self.attrs['dim']), keepdims=False) } def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') class TestReduceMeanWithDimOne(OpTest): def setUp(self): self.op_type = "reduce_mean" self.inputs = {'X': np.random.random((100, 1, 1)).astype("float64")} self.attrs = {'dim': [1], 'keep_dim': False} self.outputs = { 'Out': self.inputs['X'].mean( axis=tuple(self.attrs['dim']), keepdims=False) } def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') class TestReduceMeanWithNumelOne(OpTest): def setUp(self): self.op_type = "reduce_mean" self.inputs = {'X': np.random.random((100, 1)).astype("float64")} self.attrs = {'dim': [1], 'keep_dim': True} self.outputs = { 'Out': self.inputs['X'].mean( axis=tuple(self.attrs['dim']), keepdims=True) } def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') class TestReduceAll(OpTest): def setUp(self): self.op_type = "reduce_sum" self.inputs = {'X': np.random.random((100, 1, 1)).astype("float64")} self.attrs = {'reduce_all': True, 'keep_dim': False} self.outputs = {'Out': self.inputs['X'].sum()} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') class Test1DReduceWithAxes1(OpTest): def setUp(self): self.op_type = "reduce_sum" self.inputs = {'X': np.random.random(100).astype("float64")} self.attrs = {'dim': [0], 'keep_dim': False} self.outputs = {'Out': self.inputs['X'].sum(axis=0)} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') class TestReduceWithDtype(OpTest): def setUp(self): self.op_type = "reduce_sum" self.inputs = {'X': np.random.random((6, 2, 10)).astype("float64")} self.outputs = {'Out': self.inputs['X'].sum().astype('float64')} self.attrs = {'reduce_all': True} self.attrs.update({ 'in_dtype': int(convert_np_dtype_to_dtype_(np.float32)), 'out_dtype': int(convert_np_dtype_to_dtype_(np.float64)) }) def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') class TestReduceWithDtype1(TestReduceWithDtype): def setUp(self): self.op_type = "reduce_sum" self.inputs = {'X': np.random.random((6, 2, 10)).astype("float64")} self.outputs = {'Out': self.inputs['X'].sum(axis=1)} self.attrs = {'dim': [1]} self.attrs.update({ 'in_dtype': int(convert_np_dtype_to_dtype_(np.float32)), 'out_dtype': int(convert_np_dtype_to_dtype_(np.float64)) }) class TestReduceWithDtype2(TestReduceWithDtype): def setUp(self): self.op_type = "reduce_sum" self.inputs = {'X': np.random.random((6, 2, 10)).astype("float64")} self.outputs = {'Out': self.inputs['X'].sum(axis=1, keepdims=True)} self.attrs = {'dim': [1], 'keep_dim': True} self.attrs.update({ 'in_dtype': int(convert_np_dtype_to_dtype_(np.float32)), 'out_dtype': int(convert_np_dtype_to_dtype_(np.float64)) }) class TestReduceSumOpError(unittest.TestCase): def test_errors(self): with program_guard(Program(), Program()): # The input type of reduce_sum_op must be Variable. x1 = fluid.create_lod_tensor( np.array([[-1]]), [[1]], fluid.CPUPlace()) self.assertRaises(TypeError, fluid.layers.reduce_sum, x1) # The input dtype of reduce_sum_op must be float32 or float64 or int32 or int64. x2 = fluid.layers.data(name='x2', shape=[4], dtype="uint8") self.assertRaises(TypeError, fluid.layers.reduce_sum, x2) class TestReduceMeanOpError(unittest.TestCase): def test_errors(self): with program_guard(Program(), Program()): # The input type of reduce_mean_op must be Variable. x1 = fluid.create_lod_tensor( np.array([[-1]]), [[1]], fluid.CPUPlace()) self.assertRaises(TypeError, fluid.layers.reduce_mean, x1) # The input dtype of reduce_mean_op must be float32 or float64 or int32 or int64. x2 = fluid.layers.data(name='x2', shape=[4], dtype="uint8") self.assertRaises(TypeError, fluid.layers.reduce_mean, x2) class API_TestSumOpError(unittest.TestCase): def test_errors(self): def test_dtype1(): with fluid.program_guard(fluid.Program(), fluid.Program()): data = fluid.data(name="data", shape=[10], dtype="float32") paddle.sum(data, dtype="int32") self.assertRaises(ValueError, test_dtype1) def test_dtype2(): with fluid.program_guard(fluid.Program(), fluid.Program()): data = fluid.data(name="data", shape=[10], dtype="float32") paddle.sum(data, dtype="float32") self.assertRaises(ValueError, test_dtype2) def test_dtype3(): with fluid.program_guard(fluid.Program(), fluid.Program()): data = fluid.data(name="data", shape=[10], dtype="int32") paddle.sum(data, dtype="bool") self.assertRaises(ValueError, test_dtype3) def test_dtype4(): with fluid.program_guard(fluid.Program(), fluid.Program()): data = fluid.data(name="data", shape=[10], dtype="int32") paddle.sum(data, dtype="int32") self.assertRaises(ValueError, test_dtype3) class API_TestSumOp(unittest.TestCase): def test_1(self): with fluid.program_guard(fluid.Program(), fluid.Program()): data = fluid.data("data", shape=[10, 10], dtype="float32") result_sum = paddle.sum(input=data, dim=1, dtype="float64") place = fluid.CPUPlace() exe = fluid.Executor(place) input_data = np.random.rand(10, 10).astype(np.float32) res, = exe.run(feed={"data": input_data}, fetch_list=[result_sum]) self.assertEqual( (res == np.sum(input_data.astype(np.float64), axis=1)).all(), True) with fluid.program_guard(fluid.Program(), fluid.Program()): data = fluid.data("data", shape=[10, 10], dtype="int32") result_sum = paddle.sum(input=data, dim=1, dtype="int64") place = fluid.CPUPlace() exe = fluid.Executor(place) input_data = np.random.randint(10, size=(10, 10)).astype(np.int32) res, = exe.run(feed={"data": input_data}, fetch_list=[result_sum]) self.assertEqual( (res == np.sum(input_data.astype(np.int64), axis=1)).all(), True) with fluid.program_guard(fluid.Program(), fluid.Program()): data = fluid.data("data", shape=[10, 10], dtype="int32") result_sum = paddle.sum(input=data, dim=1) place = fluid.CPUPlace() exe = fluid.Executor(place) input_data = np.random.randint(10, size=(10, 10)).astype(np.int32) res, = exe.run(feed={"data": input_data}, fetch_list=[result_sum]) self.assertEqual((res == np.sum(input_data, axis=1)).all(), True) with fluid.program_guard(fluid.Program(), fluid.Program()): data = fluid.data("data", shape=[10, 10], dtype="int32") result_sum = paddle.sum(input=data, dim=1) place = fluid.CPUPlace() exe = fluid.Executor(place) input_data = np.random.randint(10, size=(10, 10)).astype(np.int32) res, = exe.run(feed={"data": input_data}, fetch_list=[result_sum]) self.assertEqual((res == np.sum(input_data, axis=1)).all(), True) with fluid.dygraph.guard(): np_x = np.array([10, 10]).astype('float64') x = fluid.dygraph.to_variable(np_x) z = paddle.sum(x, dim=0) np_z = z.numpy() z_expected = np.array(np.sum(np_x, axis=0)) self.assertEqual((np_z == z_expected).all(), True) if __name__ == '__main__': unittest.main()