# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np from op_test import OpTest, skip_check_grad_ci import paddle import paddle.fluid.core as core class ApiMaximumTest(unittest.TestCase): def setUp(self): if core.is_compiled_with_cuda(): self.place = core.CUDAPlace(0) else: self.place = core.CPUPlace() self.input_x = np.random.rand(10, 15).astype("float32") self.input_y = np.random.rand(10, 15).astype("float32") self.input_z = np.random.rand(15).astype("float32") def test_static_api(self): paddle.enable_static() with paddle.static.program_guard(paddle.static.Program(), paddle.static.Program()): data_x = paddle.static.data("x", shape=[10, 15], dtype="float32") data_y = paddle.static.data("y", shape=[10, 15], dtype="float32") result_max = paddle.maximum(data_x, data_y) exe = paddle.static.Executor(self.place) res, = exe.run(feed={"x": self.input_x, "y": self.input_y}, fetch_list=[result_max]) self.assertEqual((res == np.maximum(self.input_x, self.input_y)).all(), True) with paddle.static.program_guard(paddle.static.Program(), paddle.static.Program()): data_x = paddle.static.data("x", shape=[10, 15], dtype="float32") data_z = paddle.static.data("z", shape=[15], dtype="float32") result_max = paddle.maximum(data_x, data_z, axis=1) exe = paddle.static.Executor(self.place) res, = exe.run(feed={"x": self.input_x, "z": self.input_z}, fetch_list=[result_max]) self.assertEqual((res == np.maximum(self.input_x, self.input_z)).all(), True) def test_dynamic_api(self): paddle.disable_static() np_x = np.array([10, 10]).astype('float64') x = paddle.to_variable(self.input_x) y = paddle.to_variable(self.input_y) z = paddle.maximum(x, y) np_z = z.numpy() z_expected = np.array(np.maximum(self.input_x, self.input_y)) self.assertEqual((np_z == z_expected).all(), True) def test_broadcast_axis(self): paddle.disable_static() np_x = np.random.rand(5, 4, 3, 2).astype("float64") np_y = np.random.rand(4, 3).astype("float64") x = paddle.to_variable(self.input_x) y = paddle.to_variable(self.input_y) result_1 = paddle.maximum(x, y, axis=1) result_2 = paddle.maximum(x, y, axis=-2) self.assertEqual((result_1.numpy() == result_2.numpy()).all(), True)