# Copyright (c) 2021 CINN Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy import paddle import sys, os import numpy as np import paddle.fluid as fluid import paddle.static as static paddle.enable_static() resnet_input = static.data( name="resnet_input", shape=[1, 160, 7, 7], dtype='float32' ) label = static.data(name="label", shape=[1, 960, 7, 7], dtype='float32') d = paddle.nn.functional.relu6(resnet_input) f = static.nn.conv2d( input=d, num_filters=960, filter_size=1, stride=1, padding=0, dilation=1 ) g = static.nn.conv2d( input=f, num_filters=160, filter_size=1, stride=1, padding=0, dilation=1 ) i = static.nn.conv2d( input=g, num_filters=960, filter_size=1, stride=1, padding=0, dilation=1 ) j1 = paddle.scale(i, scale=2.0, bias=0.5) j = paddle.scale(j1, scale=2.0, bias=0.5) temp7 = paddle.nn.functional.relu(j) cost = paddle.nn.functional.square_error_cost(temp7, label) avg_cost = paddle.mean(cost) optimizer = paddle.optimizer.SGD(learning_rate=0.001) optimizer.minimize(avg_cost) cpu = paddle.CPUPlace() exe = static.Executor(cpu) exe.run(static.default_startup_program()) fluid.io.save_inference_model( "./resnet_model", [resnet_input.name], [temp7], exe ) print('res', temp7.name)