# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from get_test_cover_info import ( XPUOpTestWrapper, create_test_class, get_xpu_op_support_types, ) from op_test_xpu import XPUOpTest import paddle def reference_matmul(X, Y, transpose_X=False, transpose_Y=False): """Reference forward implementation using np.matmul.""" # np.matmul does not support the transpose flags, so we manually # transpose X and Y appropriately. if transpose_X: if X.ndim == 1: X = X.reshape((X.size,)) elif X.ndim == 2: X = X.T else: dim = list(range(len(X.shape))) dim[-1], dim[len(X.shape) - 2] = dim[len(X.shape) - 2], dim[-1] X = np.transpose(X, tuple(dim)) if transpose_Y: if Y.ndim == 1: Y = Y.reshape((Y.size,)) else: dim = list(range(len(Y.shape))) dim[-1], dim[len(Y.shape) - 2] = dim[len(Y.shape) - 2], dim[-1] Y = np.transpose(Y, tuple(dim)) Out = np.matmul(X, Y) if not Out.shape: # We do not support 0-dimensional Tensors (scalars). So where # np.matmul outputs a scalar, we must convert to a Tensor of # shape (1, ) instead. # Everywhere else, we are compatible with np.matmul. Out = np.array([Out], dtype="float64") return Out class XPUTestMatmulV2Op(XPUOpTestWrapper): def __init__(self): self.op_name = "matmul_v2" self.use_dynamic_create_class = False class TestMatMulV2Op(XPUOpTest): """ case 1 """ def config(self): self.x_shape = (100,) self.y_shape = (100,) self.trans_x = False self.trans_y = False def setUp(self): self.dtype = self.in_type self.config() self.op_type = "matmul_v2" if self.dtype == np.float16 or self.dtype == "float16": self.__class__.no_need_check_grad = True x = np.random.random(self.x_shape).astype(self.dtype) y = np.random.random(self.y_shape).astype(self.dtype) # -0.1 ~ 0.1 x = -0.1 + 0.2 * x y = -0.1 + 0.2 * y result = reference_matmul(x, y, self.trans_x, self.trans_y) result = result.astype(self.dtype) self.inputs = { 'X': x, 'Y': y, } self.attrs = {'trans_x': self.trans_x, 'trans_y': self.trans_y} self.outputs = {'Out': result} def test_check_output(self): place = paddle.XPUPlace(0) self.check_output_with_place(place) def test_check_grad(self): if ( hasattr(self.__class__, "no_need_check_grad") and self.__class__.no_need_check_grad ): return place = paddle.XPUPlace(0) self.check_grad_with_place(place, ['X', 'Y'], 'Out') class TestMatMulOp2(TestMatMulV2Op): """ case 2 """ def config(self): self.x_shape = 100 self.y_shape = (100, 3) self.trans_x = False self.trans_y = False class TestMatMulOp3(TestMatMulV2Op): """ case 3 """ def config(self): self.x_shape = (100,) self.y_shape = (1, 1, 100, 2) self.trans_x = False self.trans_y = False class TestMatMulOp4(TestMatMulV2Op): """ case 4 """ def config(self): self.x_shape = (1, 1, 100, 1) self.y_shape = (1, 100) self.trans_x = False self.trans_y = False class TestMatMulOp5(TestMatMulV2Op): """ case 5 """ def config(self): self.x_shape = (1, 1, 100, 1) self.y_shape = (100,) self.trans_x = True self.trans_y = False class TestMatMulOp6(TestMatMulV2Op): """ case 6 """ def config(self): self.x_shape = (1, 2, 102, 10) self.y_shape = (2, 10, 111) self.trans_x = False self.trans_y = False class TestMatMulOp7(TestMatMulV2Op): """ case 7 """ def config(self): self.x_shape = (1, 2, 100, 1) self.y_shape = (2, 100, 12) self.trans_x = True self.trans_y = False class TestMatMulOp8(TestMatMulV2Op): """ case 8 """ def config(self): self.x_shape = (1, 1, 2, 100) self.y_shape = (1, 1, 100, 2) self.trans_x = False self.trans_y = False class TestMatMulOp9(TestMatMulV2Op): """ case 9 """ def config(self): self.x_shape = (5, 20, 7) self.y_shape = (5, 7, 7) self.trans_x = False self.trans_y = True class TestMatMulOp10(TestMatMulV2Op): """ case 10 """ def config(self): self.x_shape = (3, 20, 8) self.y_shape = (3, 20, 8) self.trans_x = True self.trans_y = False class TestMatMulOp11(TestMatMulV2Op): """ case 11 """ def config(self): self.x_shape = (2, 20, 11) self.y_shape = (11, 30) self.trans_x = False self.trans_y = False class TestMatMulOp12(TestMatMulV2Op): """ case 12 """ def config(self): self.x_shape = (1, 20, 100) self.y_shape = (100,) self.trans_x = False self.trans_y = False class TestMatMulOp13(TestMatMulV2Op): """ case 13 """ def config(self): self.x_shape = (2, 2, 10, 10) self.y_shape = (2, 2, 10, 10) self.trans_x = True self.trans_y = False class TestMatMulOp14(TestMatMulV2Op): """ case 14_1 """ def config(self): self.x_shape = (7, 2, 100, 10) self.y_shape = (7, 2, 10, 90) self.trans_x = False self.trans_y = False class TestMatMulOp15(TestMatMulV2Op): """ case 14_2 """ def config(self): self.x_shape = (3, 2, 4, 10) self.y_shape = (3, 2, 4, 10) self.trans_x = False self.trans_y = True class TestMatMulOp17(TestMatMulV2Op): """ case 17 : to check the gradient for special case """ def config(self): self.x_shape = (2, 1, 100) self.y_shape = 100 self.trans_x = False self.trans_y = False class TestMatMulOp18(TestMatMulV2Op): """ case 18 : for ppyoloe model """ def config(self): self.x_shape = (8, 11, 4, 17) self.y_shape = 17 self.trans_x = False self.trans_y = False class TestMatMulOp19(TestMatMulV2Op): """ case 19 : (x.ndim <= 2) && (y.ndim >= 3), x need to broadcast and trans_y is false """ def config(self): self.x_shape = (10, 20) self.y_shape = (2, 20, 4) self.trans_x = False self.trans_y = False class TestMatMulOp20(TestMatMulV2Op): """ case 20 : (x.ndim <= 2) && (y.ndim >= 3), x need to broadcast and trans_y is false """ def config(self): self.x_shape = (20, 10) self.y_shape = (2, 20, 4) self.trans_x = True self.trans_y = False support_types = get_xpu_op_support_types('matmul_v2') for stype in support_types: create_test_class(globals(), XPUTestMatmulV2Op, stype) if __name__ == "__main__": paddle.enable_static() unittest.main()