/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/phi/api/lib/api_custom_impl.h" #include "paddle/phi/api/lib/api_registry.h" #include "paddle/phi/api/lib/api_utils.h" #include "paddle/phi/api/lib/data_transform.h" #include "paddle/phi/api/lib/kernel_dispatch.h" #include "paddle/phi/api/lib/utils/storage.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/core/meta_tensor.h" #include "paddle/phi/infermeta/binary.h" #include "paddle/phi/infermeta/multiary.h" #include "paddle/phi/infermeta/nullary.h" #include "paddle/phi/infermeta/unary.h" #include "glog/logging.h" namespace paddle { namespace experimental { Tensor copy_to_impl(const Tensor& x, Backend backend, bool blocking) { auto kernel_key_set = ParseKernelKeyByInputArgs(x); kernel_key_set.backend_set = kernel_key_set.backend_set | BackendSet(backend); auto kernel_key = kernel_key_set.GetHigestPriorityKernelKey(); auto kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError( "copy", kernel_key); VLOG(6) << "copy API kernel key: " << kernel_key; VLOG(6) << "copy API kernel: " << kernel; auto* dev_ctx = GetDeviceContextByBackend(kernel_key.backend()); auto dense_x = TensorToDenseTensor(x); Tensor out; auto kernel_out = SetKernelOutput(kernel_key.backend(), &out); phi::MetaTensor meta_out(kernel_out); phi::UnchangedInferMeta(*dense_x, &meta_out); using kernel_signature = void (*)(const platform::DeviceContext&, const phi::DenseTensor&, phi::Place, bool, phi::DenseTensor*); auto* kernel_fn = kernel.GetVariadicKernelFn(); (*kernel_fn)( *dev_ctx, *dense_x, phi::TransToPtenPlace(backend), blocking, kernel_out); return out; } std::vector split_impl(const Tensor& x, const ScalarArray& num_or_sections, const Scalar& axis) { auto kernel_key_set = ParseKernelKeyByInputArgs(x); auto kernel_key = kernel_key_set.GetHigestPriorityKernelKey(); Backend kernel_backend = kernel_key.backend(); DataLayout kernel_layout = kernel_key.layout(); DataType kernel_data_type = kernel_key.dtype(); auto kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError( "split", {kernel_backend, kernel_layout, kernel_data_type}); VLOG(6) << "split API kernel key: [" << kernel_backend << ", " << kernel_layout << ", " << kernel_data_type << "]"; VLOG(6) << "split API kernel: " << kernel; auto* dev_ctx = GetDeviceContextByBackend(kernel_backend); auto dense_x = PrepareData(x, kernel.InputAt(0), {}); // Calculate the number of out tensors size_t out_number; if (num_or_sections.GetData().size() == 1) { out_number = num_or_sections.GetData()[0]; } else { out_number = num_or_sections.GetData().size(); } std::vector out; auto dense_outs = SetKernelOutput(out_number, kernel_backend, &out); std::vector meta_outs; for (size_t i = 0; i < out_number; ++i) { meta_outs.push_back(dense_outs[i]); } phi::SplitInferMeta( MakeMetaTensor(*dense_x), num_or_sections, axis, &meta_outs); using kernel_signature = void (*)(const platform::DeviceContext&, const phi::DenseTensor&, const phi::ScalarArray&, const phi::Scalar&, std::vector&); auto* kernel_fn = kernel.GetVariadicKernelFn(); (*kernel_fn)(*dev_ctx, *dense_x, phi::ScalarArray(num_or_sections), phi::Scalar(axis), dense_outs); return out; } } // namespace experimental } // namespace paddle