import numpy as np
import unittest

import paddle.v2.fluid.framework as framework
import paddle.v2.fluid.initializer as initializer

DELTA = 0.00001


class TestConstantInitializer(unittest.TestCase):
    def test_constant_initializer_default_value(self):
        """Test the constant initializer with default value
        """
        program = framework.Program()
        block = program.global_block()
        block.create_parameter(
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="param",
            initializer=initializer.ConstantInitializer())
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'fill_constant')
        self.assertAlmostEqual(init_op.attr('value'), 0.0, delta=DELTA)

    def test_constant_initializer(self):
        """Test constant initializer with supplied value
        """
        program = framework.Program()
        block = program.global_block()
        block.create_parameter(
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="param",
            initializer=initializer.ConstantInitializer(2.3))
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'fill_constant')
        self.assertAlmostEqual(init_op.attr('value'), 2.3, delta=DELTA)


class TestUniformInitializer(unittest.TestCase):
    def test_uniform_initializer_default_value(self):
        """Test the uniform initializer with default value
        """
        program = framework.Program()
        block = program.global_block()
        block.create_parameter(
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="param",
            initializer=initializer.UniformInitializer())
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'uniform_random')
        self.assertAlmostEqual(init_op.attr('min'), -1.0, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('max'), 1.0, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)

    def test_uniform_initializer_random_seed(self):
        """Test the uniform initializer with manually setting seed
        """
        program = framework.Program()
        program.random_seed = 123
        block = program.global_block()
        block.create_parameter(
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="param",
            initializer=initializer.UniformInitializer())
        block.create_parameter(
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="param",
            initializer=initializer.UniformInitializer(seed=456))
        init_op = block.ops[1]
        self.assertEqual(init_op.attr("seed"), 123)
        init_op1 = block.ops[0]
        self.assertEqual(init_op1.attr("seed"), 456)

    def test_uniform_initializer(self):
        """Test uniform initializer with supplied attributes
        """
        program = framework.Program()
        block = program.global_block()
        block.create_parameter(
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="param",
            initializer=initializer.UniformInitializer(-4.2, 3.1, 123))
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'uniform_random')
        self.assertAlmostEqual(init_op.attr('min'), -4.2, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('max'), 3.1, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 123)


class TestNormalInitializer(unittest.TestCase):
    def test_normal_initializer_default_value(self):
        """Test the normal initializer with default value
        """
        program = framework.Program()
        block = program.global_block()
        block.create_parameter(
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="param",
            initializer=initializer.NormalInitializer())
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'gaussian_random')
        self.assertAlmostEqual(init_op.attr('mean'), 0.0, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('std'), 1.0, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)

    def test_normal_initializer(self):
        """Test normal initializer with supplied attributes
        """
        program = framework.Program()
        block = program.global_block()
        block.create_parameter(
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="param",
            initializer=initializer.NormalInitializer(2.3, 1.9, 123))
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'gaussian_random')
        self.assertAlmostEqual(init_op.attr('mean'), 2.3, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('std'), 1.9, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 123)


class TestXavierInitializer(unittest.TestCase):
    def test_uniform_xavier_initializer(self):
        """Test Xavier initializer with uniform distribution on
           for matrix multiply.
        """
        program = framework.Program()
        block = program.global_block()
        param = block.create_parameter(
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="param",
            initializer=initializer.XavierInitializer())
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'uniform_random')
        limit = np.sqrt(6.0 / (param.shape[0] + param.shape[1]))
        self.assertAlmostEqual(init_op.attr('min'), -limit, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('max'), limit, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)

    def test_uniform_xavier_initializer_conv(self):
        """Test Xavier initializer with uniform distribution on
           for convolutions.
        """
        program = framework.Program()
        block = program.global_block()
        param = block.create_parameter(
            dtype="float32",
            shape=[5, 10, 15, 20],
            lod_level=0,
            name="param",
            initializer=initializer.XavierInitializer())
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'uniform_random')
        receptive_field_size = float(15 * 20)
        limit = np.sqrt(6.0 / (
            (param.shape[0] + param.shape[1]) * receptive_field_size))
        self.assertAlmostEqual(init_op.attr('min'), -limit, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('max'), limit, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)

    def test_normal_xavier_initializer(self):
        """Test Xavier initializer with normal distribution on
           for matrix multiply.
        """
        program = framework.Program()
        block = program.global_block()
        param = block.create_parameter(
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="param",
            initializer=initializer.XavierInitializer(uniform=False))
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'gaussian_random')
        std = np.sqrt(2.0 / (param.shape[0] + param.shape[1]))
        self.assertAlmostEqual(init_op.attr('mean'), 0.0, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('std'), std, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)

    def test_normal_xavier_initializer_conv(self):
        """Test Xavier initializer with normal distribution on
           for convolutions.
        """
        program = framework.Program()
        block = program.global_block()
        param = block.create_parameter(
            dtype="float32",
            shape=[5, 10, 15, 20],
            lod_level=0,
            name="param",
            initializer=initializer.XavierInitializer(uniform=False))
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'gaussian_random')
        receptive_field_size = float(15 * 20)
        std = np.sqrt(2.0 / (
            (param.shape[0] + param.shape[1]) * receptive_field_size))
        self.assertAlmostEqual(init_op.attr('mean'), 0.0, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('std'), std, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)

    def test_xavier_initializer_supplied_arguments(self):
        """Test the Xavier initializer with supplied arguments
        """
        program = framework.Program()
        block = program.global_block()
        block.create_parameter(
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="param",
            initializer=initializer.XavierInitializer(
                fan_in=12, fan_out=23, seed=134))
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'uniform_random')
        limit = np.sqrt(6.0 / (12 + 23))
        self.assertAlmostEqual(init_op.attr('min'), -limit, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('max'), limit, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 134)


class TestMSRAInitializer(unittest.TestCase):
    def test_uniform_msra_initializer(self):
        """Test MSRA initializer with uniform distribution on
           for matrix multiply.
        """
        program = framework.Program()
        block = program.global_block()
        param = block.create_parameter(
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="param",
            initializer=initializer.MSRAInitializer())
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'uniform_random')
        limit = np.sqrt(6.0 / param.shape[0])
        self.assertAlmostEqual(init_op.attr('min'), -limit, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('max'), limit, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)

    def test_uniform_msra_initializer_conv(self):
        """Test MSRA initializer with uniform distribution on
           for convolutions.
        """
        program = framework.Program()
        block = program.global_block()
        param = block.create_parameter(
            dtype="float32",
            shape=[5, 10, 15, 20],
            lod_level=0,
            name="param",
            initializer=initializer.MSRAInitializer())
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'uniform_random')
        receptive_field_size = float(15 * 20)
        limit = np.sqrt(6.0 / (param.shape[1] * receptive_field_size))
        self.assertAlmostEqual(init_op.attr('min'), -limit, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('max'), limit, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)

    def test_normal_msra_initializer(self):
        """Test MSRA initializer with normal distribution on
           for matrix multiply.
        """
        program = framework.Program()
        block = program.global_block()
        param = block.create_parameter(
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="param",
            initializer=initializer.MSRAInitializer(uniform=False))
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'gaussian_random')
        std = np.sqrt(2.0 / param.shape[0])
        self.assertAlmostEqual(init_op.attr('mean'), 0.0, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('std'), std, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)

    def test_normal_msra_initializer_conv(self):
        """Test MSRA initializer with normal distribution on
           for convolutions.
        """
        program = framework.Program()
        block = program.global_block()
        param = block.create_parameter(
            dtype="float32",
            shape=[5, 10, 15, 20],
            lod_level=0,
            name="param",
            initializer=initializer.MSRAInitializer(uniform=False))
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'gaussian_random')
        receptive_field_size = float(15 * 20)
        std = np.sqrt(2.0 / (param.shape[1] * receptive_field_size))
        self.assertAlmostEqual(init_op.attr('mean'), 0.0, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('std'), std, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 0)

    def test_msra_initializer_supplied_arguments(self):
        """Test the MSRA initializer with supplied arguments
        """
        program = framework.Program()
        block = program.global_block()
        block.create_parameter(
            dtype="float32",
            shape=[5, 10],
            lod_level=0,
            name="param",
            initializer=initializer.MSRAInitializer(
                fan_in=12, seed=134))
        self.assertEqual(len(block.ops), 1)
        init_op = block.ops[0]
        self.assertEqual(init_op.type, 'uniform_random')
        limit = np.sqrt(6.0 / 12)
        self.assertAlmostEqual(init_op.attr('min'), -limit, delta=DELTA)
        self.assertAlmostEqual(init_op.attr('max'), limit, delta=DELTA)
        self.assertEqual(init_op.attr('seed'), 134)


if __name__ == '__main__':
    unittest.main()