# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np from op_test import OpTest class PReluTest(OpTest): def setUp(self): self.op_type = "prelu" x_np = np.random.normal(size=(10, 10)).astype("float32") for pos, val in np.ndenumerate(x_np): # Since zero point in prelu is not differentiable, avoid randomize # zero. while abs(val) < 1e-3: x_np[pos] = np.random.normal() val = x_np[pos] x_np_sign = np.sign(x_np) x_np = x_np_sign * np.maximum(x_np, .005) alpha_np = np.array([.1], dtype="float32") self.inputs = {'X': x_np, 'Alpha': alpha_np} out_np = np.maximum(self.inputs['X'], 0.) out_np = out_np + np.minimum(self.inputs['X'], 0.) * self.inputs['Alpha'] assert out_np is not self.inputs['X'] self.outputs = {'Out': out_np} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') if __name__ == "__main__": unittest.main()