# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np from op_test import OpTest def fully_connected_naive(input, weights, bias_data=None): in_n, in_c, in_h, in_w = input.shape w_h, w_c = weights.shape x_data = np.reshape(input, [in_n, in_c * in_h * in_w]) w_data = np.transpose(np.reshape(weights, (w_c, in_c * in_h * in_w))) result = None if not bias_data: result = np.dot(x_data, w_data) else: result = np.dot(x_data, w_data) + bias_data return result class MatrixGenerate: def __init__(self, mb, ic, oc, h, w): self.input = np.random.random((mb, ic, h, w)).astype("float32") self.weights = np.random.random((ic * h * w, oc)).astype("float32") class TestFCMKLDNNOp(OpTest): def setUp(self): self.op_type = "fc" self.use_mkldnn = True self.with_bias = True self.matrix = MatrixGenerate(1, 10, 15, 3, 3) self.inputs = {'Input': self.matrix.input, 'W': self.matrix.weights} self.attrs = { 'use_mkldnn': self.use_mkldnn, 'with_bias': self.with_bias } self.outputs = { 'Out': fully_connected_naive(self.matrix.input, self.matrix.weights) } def test_check_output(self): self.check_output() def test_check_grad_normal(self): self.check_grad(set(['Input', 'W']), 'Out', max_relative_error=0.9) def test_check_grad_no_weight(self): self.check_grad( ['Input'], 'Out', max_relative_error=0.5, no_grad_set=set('W')) class TestFCMKLDNNOp1(TestFCMKLDNNOp): def init_op_type(self): self.matrix = MatrixGenerate(2, 15, 48, 2, 2) class TestFCMKLDNNOp2(TestFCMKLDNNOp): def init_op_type(self): self.matrix = MatrixGenerate(2, 32, 40, 1, 1) class TestFCMKLDNNOp3(TestFCMKLDNNOp): def init_op_type(self): self.matrix = MatrixGenerate(2, 2, 4, 1, 1) class TestFCMKLDNNOp4(TestFCMKLDNNOp): def init_op_type(self): self.with_bias = False self.matrix = MatrixGenerate(2, 32, 48, 2, 2) class TestFCMKLDNNOp4(TestFCMKLDNNOp): def init_op_type(self): self.with_bias = False self.matrix = MatrixGenerate(2, 32, 1000, 6, 6) if __name__ == "__main__": unittest.main()