# copyright (c) 2019 paddlepaddle authors. all rights reserved. # # licensed under the apache license, version 2.0 (the "license"); # you may not use this file except in compliance with the license. # you may obtain a copy of the license at # # http://www.apache.org/licenses/license-2.0 # # unless required by applicable law or agreed to in writing, software # distributed under the license is distributed on an "as is" basis, # without warranties or conditions of any kind, either express or implied. # see the license for the specific language governing permissions and # limitations under the license. import unittest import os import sys import argparse import logging import struct import six import numpy as np import time import paddle import paddle.fluid as fluid from paddle.fluid.framework import IrGraph from paddle.fluid.contrib.slim.quantization import TransformForMkldnnPass from paddle.fluid import core logging.basicConfig(format='%(asctime)s-%(levelname)s: %(message)s') _logger = logging.getLogger(__name__) _logger.setLevel(logging.INFO) def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--batch_size', type=int, default=1, help='Batch size.') parser.add_argument( '--skip_batch_num', type=int, default=0, help='Number of the first minibatches to skip in performance statistics.' ) parser.add_argument( '--qat_model', type=str, default='', help='A path to a QAT model.') parser.add_argument('--infer_data', type=str, default='', help='Data file.') parser.add_argument( '--batch_num', type=int, default=1, help='Number of batches to process. 0 or less means all.') parser.add_argument( '--acc_diff_threshold', type=float, default=0.01, help='Accepted accuracy difference threshold.') test_args, args = parser.parse_known_args(namespace=unittest) return test_args, sys.argv[:1] + args class TestQatInt8Comparison(unittest.TestCase): """ Test for accuracy comparison of QAT FP32 and INT8 inference. """ def _reader_creator(self, data_file='data.bin'): def reader(): with open(data_file, 'rb') as fp: num = fp.read(8) num = struct.unpack('q', num)[0] imgs_offset = 8 img_ch = 3 img_w = 224 img_h = 224 img_pixel_size = 4 img_size = img_ch * img_h * img_w * img_pixel_size label_size = 8 labels_offset = imgs_offset + num * img_size step = 0 while step < num: fp.seek(imgs_offset + img_size * step) img = fp.read(img_size) img = struct.unpack_from( '{}f'.format(img_ch * img_w * img_h), img) img = np.array(img) img.shape = (img_ch, img_w, img_h) fp.seek(labels_offset + label_size * step) label = fp.read(label_size) label = struct.unpack('q', label)[0] yield img, int(label) step += 1 return reader def _get_batch_accuracy(self, batch_output=None, labels=None): total = 0 correct = 0 correct_5 = 0 for n, result in enumerate(batch_output): index = result.argsort() top_1_index = index[-1] top_5_index = index[-5:] total += 1 if top_1_index == labels[n]: correct += 1 if labels[n] in top_5_index: correct_5 += 1 acc1 = float(correct) / float(total) acc5 = float(correct_5) / float(total) return acc1, acc5 def _prepare_for_fp32_mkldnn(self, graph): ops = graph.all_op_nodes() for op_node in ops: name = op_node.name() if name in ['depthwise_conv2d']: input_var_node = graph._find_node_by_name( op_node.inputs, op_node.input("Input")[0]) weight_var_node = graph._find_node_by_name( op_node.inputs, op_node.input("Filter")[0]) output_var_node = graph._find_node_by_name( graph.all_var_nodes(), op_node.output("Output")[0]) attrs = { name: op_node.op().attr(name) for name in op_node.op().attr_names() } conv_op_node = graph.create_op_node( op_type='conv2d', attrs=attrs, inputs={ 'Input': input_var_node, 'Filter': weight_var_node }, outputs={'Output': output_var_node}) graph.link_to(input_var_node, conv_op_node) graph.link_to(weight_var_node, conv_op_node) graph.link_to(conv_op_node, output_var_node) graph.safe_remove_nodes(op_node) return graph def _predict(self, test_reader=None, model_path=None, batch_size=1, batch_num=1, skip_batch_num=0, transform_to_int8=False): place = fluid.CPUPlace() exe = fluid.Executor(place) inference_scope = fluid.executor.global_scope() with fluid.scope_guard(inference_scope): if os.path.exists(os.path.join(model_path, '__model__')): [inference_program, feed_target_names, fetch_targets] = fluid.io.load_inference_model(model_path, exe) else: [inference_program, feed_target_names, fetch_targets] = fluid.io.load_inference_model( model_path, exe, 'model', 'params') graph = IrGraph(core.Graph(inference_program.desc), for_test=True) if (transform_to_int8): mkldnn_int8_pass = TransformForMkldnnPass( scope=inference_scope, place=place) mkldnn_int8_pass.apply(graph) else: graph = self._prepare_for_fp32_mkldnn(graph) inference_program = graph.to_program() dshape = [3, 224, 224] outputs = [] infer_accs1 = [] infer_accs5 = [] fpses = [] batch_times = [] total_samples = 0 top1 = 0.0 top5 = 0.0 iters = 0 infer_start_time = time.time() for data in test_reader(): if batch_num > 0 and iters >= batch_num: break if iters == skip_batch_num: total_samples = 0 infer_start_time = time.time() if six.PY2: images = map(lambda x: x[0].reshape(dshape), data) if six.PY3: images = list(map(lambda x: x[0].reshape(dshape), data)) images = np.array(images).astype('float32') labels = np.array([x[1] for x in data]).astype('int64') start = time.time() out = exe.run(inference_program, feed={feed_target_names[0]: images}, fetch_list=fetch_targets) batch_time = (time.time() - start) * 1000 # in miliseconds outputs.append(out[0]) batch_acc1, batch_acc5 = self._get_batch_accuracy(out[0], labels) infer_accs1.append(batch_acc1) infer_accs5.append(batch_acc5) samples = len(data) total_samples += samples batch_times.append(batch_time) fps = samples / batch_time fpses.append(fps) iters += 1 appx = ' (warm-up)' if iters <= skip_batch_num else '' _logger.info('batch {0}{5}, acc1: {1:.4f}, acc5: {2:.4f}, ' 'latency: {3:.4f} ms, fps: {4:.2f}'.format( iters, batch_acc1, batch_acc5, batch_time / batch_size, fps, appx)) # Postprocess benchmark data batch_latencies = batch_times[skip_batch_num:] batch_latency_avg = np.average(batch_latencies) latency_avg = batch_latency_avg / batch_size fpses = fpses[skip_batch_num:] fps_avg = np.average(fpses) infer_total_time = time.time() - infer_start_time acc1_avg = np.mean(infer_accs1) acc5_avg = np.mean(infer_accs5) _logger.info('Total inference run time: {:.2f} s'.format( infer_total_time)) return outputs, acc1_avg, acc5_avg, fps_avg, latency_avg def _summarize_performance(self, fp32_fps, fp32_lat, int8_fps, int8_lat): _logger.info('--- Performance summary ---') _logger.info('FP32: avg fps: {0:.2f}, avg latency: {1:.4f} ms'.format( fp32_fps, fp32_lat)) _logger.info('INT8: avg fps: {0:.2f}, avg latency: {1:.4f} ms'.format( int8_fps, int8_lat)) def _compare_accuracy(self, fp32_acc1, fp32_acc5, int8_acc1, int8_acc5, threshold): _logger.info('--- Accuracy summary ---') _logger.info( 'Accepted top1 accuracy drop threshold: {0}. (condition: (FP32_top1_acc - IN8_top1_acc) <= threshold)' .format(threshold)) _logger.info( 'FP32: avg top1 accuracy: {0:.4f}, avg top5 accuracy: {1:.4f}'. format(fp32_acc1, fp32_acc5)) _logger.info( 'INT8: avg top1 accuracy: {0:.4f}, avg top5 accuracy: {1:.4f}'. format(int8_acc1, int8_acc5)) assert fp32_acc1 > 0.0 assert int8_acc1 > 0.0 assert fp32_acc1 - int8_acc1 <= threshold def test_graph_transformation(self): if not fluid.core.is_compiled_with_mkldnn(): return qat_model_path = test_case_args.qat_model data_path = test_case_args.infer_data batch_size = test_case_args.batch_size batch_num = test_case_args.batch_num skip_batch_num = test_case_args.skip_batch_num acc_diff_threshold = test_case_args.acc_diff_threshold _logger.info('QAT FP32 & INT8 prediction run.') _logger.info('QAT model: {0}'.format(qat_model_path)) _logger.info('Dataset: {0}'.format(data_path)) _logger.info('Batch size: {0}'.format(batch_size)) _logger.info('Batch number: {0}'.format(batch_num)) _logger.info('Accuracy drop threshold: {0}.'.format(acc_diff_threshold)) _logger.info('--- QAT FP32 prediction start ---') val_reader = paddle.batch( self._reader_creator(data_path), batch_size=batch_size) fp32_output, fp32_acc1, fp32_acc5, fp32_fps, fp32_lat = self._predict( val_reader, qat_model_path, batch_size, batch_num, skip_batch_num, transform_to_int8=False) _logger.info('--- QAT INT8 prediction start ---') val_reader = paddle.batch( self._reader_creator(data_path), batch_size=batch_size) int8_output, int8_acc1, int8_acc5, int8_fps, int8_lat = self._predict( val_reader, qat_model_path, batch_size, batch_num, skip_batch_num, transform_to_int8=True) self._summarize_performance(fp32_fps, fp32_lat, int8_fps, int8_lat) self._compare_accuracy(fp32_acc1, fp32_acc5, int8_acc1, int8_acc5, acc_diff_threshold) if __name__ == '__main__': global test_case_args test_case_args, remaining_args = parse_args() unittest.main(argv=remaining_args)