# Copyright (c) 2021 CINN Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ A fake model with multiple FC layers to test CINN on a more complex model. """ import os import sys import numpy import numpy as np import paddle from paddle import fluid, static size = 64 num_layers = 6 paddle.enable_static() a = static.data(name="A", shape=[-1, size], dtype='float32') label = static.data(name="label", shape=[size], dtype='float32') fc_out = static.nn.fc( x=a, size=size, activation="relu", bias_attr=paddle.ParamAttr(name="fc_bias"), num_flatten_dims=1, ) for i in range(num_layers - 1): fc_out = static.nn.fc( x=fc_out, size=size, activation="relu", bias_attr=paddle.ParamAttr(name="fc_bias"), num_flatten_dims=1, ) cost = paddle.nn.functional.square_error_cost(fc_out, label) avg_cost = paddle.mean(cost) optimizer = paddle.optimizer.SGD(learning_rate=0.001) optimizer.minimize(avg_cost) cpu = paddle.CPUPlace() loss = exe = static.Executor(cpu) exe.run(static.default_startup_program()) fluid.io.save_inference_model("./multi_fc_model", [a.name], [fc_out], exe) print('res', fc_out.name)