# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle.distributed.communication.stream as stream def recv(tensor, src=0, group=None, sync_op=True): """ Receive a tensor to the sender. Args: tensor (Tensor): The tensor to receive. Its data type should be float16, float32, float64, int32, int64, int8, uint8, bool or bfloat16. src (int): The source rank id. group (Group, optional): The group instance return by new_group or None for global default group. Default: None. sync_op (bool, optional): Whether this op is a sync op. The default value is True. Returns: Return a task object. Examples: .. code-block:: python # required: distributed import paddle import paddle.distributed as dist dist.init_parallel_env() if dist.get_rank() == 0: data = paddle.to_tensor([7, 8, 9]) dist.send(data, dst=1) else: data = paddle.to_tensor([1, 2, 3]) dist.recv(data, src=0) print(data) # [7, 8, 9] (2 GPUs) """ return stream.recv( tensor, src=src, group=group, sync_op=sync_op, use_calc_stream=False ) def irecv(tensor, src=None, group=None): """ Receive a tensor to the sender. Args: tensor (Tensor): The Tensor to receive. Its data type should be float16, float32, float64, int32, int64, int8, uint8, bool or bfloat16. src (int): The source rank id. group (Group, optional): The group instance return by new_group or None for global default group. Default: None. Returns: Return a task object. Warning: This API only supports the dygraph mode. Examples: .. code-block:: python # required: distributed import paddle import paddle.distributed as dist dist.init_parallel_env() if dist.get_rank() == 0: data = paddle.to_tensor([7, 8, 9]) task = dist.isend(data, dst=1) else: data = paddle.to_tensor([1, 2, 3]) task = dist.irecv(data, src=0) task.wait() print(data) # [7, 8, 9] (2 GPUs) """ return recv(tensor, src, group, sync_op=False)