# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from eager_op_test import OpTest, convert_float_to_uint16 from op import Operator import paddle from paddle.fluid import core class TestShapeOp(OpTest): def setUp(self): self.op_type = "shape" self.python_api = paddle.shape self.config() input = np.zeros(self.shape, dtype=self.dtype) self.inputs = {'Input': input} self.outputs = {'Out': np.array(self.shape)} def config(self): self.shape = [2, 3] self.dtype = np.float32 def test_check_output(self): self.check_output(check_cinn=True) class case1(TestShapeOp): def config(self): self.shape = [2] self.dtype = np.float32 class case2(TestShapeOp): def config(self): self.shape = [1, 2, 3] self.dtype = np.float32 class TestShapeOpFp16(TestShapeOp): def config(self): self.shape = [2, 3] self.dtype = np.float16 class case1Fp16(TestShapeOp): def config(self): self.shape = [2] self.dtype = np.float16 class case2Fp16(TestShapeOp): def config(self): self.shape = [1, 2, 3] self.dtype = np.float16 class TestShapeWithSelectedRows(unittest.TestCase): def get_places(self): places = [core.CPUPlace()] if core.is_compiled_with_cuda(): places.append(core.CUDAPlace(0)) return places def check_with_place(self, place): scope = core.Scope() x_rows = [0, 1, 5, 4, 19] height = 20 row_numel = 2 np_array = np.ones((len(x_rows), row_numel)).astype("float32") # initialize input variable X x = scope.var('X').get_selected_rows() x.set_rows(x_rows) x.set_height(height) x_tensor = x.get_tensor() x_tensor.set(np_array, place) # initialize input variable Out out_shape = scope.var("Out").get_tensor() op = Operator("shape", Input="X", Out="Out") op.run(scope, place) out_shape = np.array(out_shape).tolist() self.assertListEqual([5, 2], out_shape) def test_check_output(self): for place in self.get_places(): self.check_with_place(place) @unittest.skipIf( not core.is_compiled_with_cuda() or not core.supports_bfloat16(), "core is not compiled with CUDA or place do not support bfloat16", ) class TestShapeOpBf16(OpTest): def setUp(self): self.op_type = "shape" self.dtype = 'bfloat16' self.python_api = paddle.shape self.config() input = np.zeros(self.shape) input = convert_float_to_uint16(input.astype('float32')) self.inputs = {'Input': input} self.outputs = {'Out': np.array(self.shape)} def config(self): self.shape = [2, 3] def test_check_output(self): place = core.CUDAPlace(0) self.check_output_with_place(place, check_cinn=True) class case1Bf16(TestShapeOpBf16): def config(self): self.shape = [2] class case2Bf16(TestShapeOpBf16): def config(self): self.shape = [1, 2, 3] if __name__ == '__main__': unittest.main()