# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from eager_op_test import ( OpTest, check_out_dtype, paddle_static_guard, skip_check_grad_ci, ) from op import Operator import paddle import paddle.nn.functional as F from paddle import fluid from paddle.fluid import Program, core, program_guard class TestLookupTableOp(OpTest): def setUp(self): self.op_type = "lookup_table" table = np.random.random((17, 31)).astype("float64") ids = np.random.randint(0, 17, 4).astype("int64") ids_expand = np.expand_dims(ids, axis=1) self.inputs = {'W': table, 'Ids': ids_expand} self.outputs = {'Out': table[ids]} def test_check_output(self): self.check_output(check_cinn=True) def test_check_grad(self): self.check_grad(['W'], 'Out', no_grad_set=set('Ids'), check_cinn=True) class TestLookupTableOpWithTensorIds(OpTest): def setUp(self): self.op_type = "lookup_table" table = np.random.random((17, 31)).astype("float64") ids = np.random.randint(low=0, high=17, size=(2, 4, 5, 1)).astype( "int64" ) self.inputs = {'W': table, 'Ids': ids} self.outputs = {'Out': table[ids.flatten()].reshape((2, 4, 5, 31))} def test_check_output(self): self.check_output(check_cinn=True) def test_check_grad(self): self.check_grad(['W'], 'Out', no_grad_set=set('Ids'), check_cinn=True) @skip_check_grad_ci( reason="Since paddings are not trainable and fixed in forward," "the gradient of paddings makes no sense and we don't " "test the gradient here." ) class TestLookupTableOpWithPadding(TestLookupTableOp): def test_check_output(self): ids = np.squeeze(self.inputs['Ids']) padding_idx = np.random.choice(ids, 1)[0] self.outputs['Out'][ids == padding_idx] = np.zeros(31) self.attrs = {'padding_idx': int(padding_idx)} self.check_output(check_cinn=True) @skip_check_grad_ci( reason="Since paddings are not trainable and fixed in forward," "the gradient of paddings makes no sense and we don't " "test the gradient here." ) class TestLookupTableOpWithTensorIdsAndPadding(TestLookupTableOpWithTensorIds): def test_check_output(self): ids = self.inputs['Ids'] flatten_idx = ids.flatten() padding_idx = np.random.choice(flatten_idx, 1)[0] self.outputs['Out'][np.squeeze(ids == padding_idx)] = np.zeros(31) self.attrs = {'padding_idx': padding_idx} self.check_output(check_cinn=True) class TestLookupTableWIsSelectedRows(unittest.TestCase): def prepare_ids(self, scope, place): ids_tensor = scope.var('Ids').get_tensor() ids_array = np.array([[0], [4], [3], [5]]).astype("int64") ids_tensor.set(ids_array, place) return ids_array def prepare_w(self, scope, place): rows = [0, 1, 2, 3, 4, 5, 6] row_numel = 12 w_selected_rows = scope.var('W').get_selected_rows() w_selected_rows.set_height(len(rows)) w_selected_rows.set_rows(rows) w_array = np.ones((len(rows), row_numel)).astype("float32") for i in range(len(rows)): w_array[i] *= i w_tensor = w_selected_rows.get_tensor() w_tensor.set(w_array, place) def create_out_tensor(self, scope, place): return scope.var('Out').get_tensor() def check_result(self, ids_array, result_array): # all(): return True if all elements of the iterable are true (or if the iterable is empty) for idx, row in enumerate(ids_array): assert (row[0] == result_array[idx]).all() def check_with_place(self, place): scope = core.Scope() ids_array = self.prepare_ids(scope, place) self.prepare_w(scope, place) out_tensor = self.create_out_tensor(scope, place) # create and run lookup_table operator lookup_table = Operator("lookup_table", W='W', Ids='Ids', Out='Out') lookup_table.run(scope, place) # get result from Out result_array = np.array(out_tensor) self.check_result(ids_array, result_array) def test_w_is_selected_rows(self): places = [core.CPUPlace()] # currently only support CPU for place in places: self.check_with_place(place) class TestLookupTableWithTensorIdsWIsSelectedRows( TestLookupTableWIsSelectedRows ): def prepare_ids(self, scope, place): ids_tensor = scope.var('Ids').get_tensor() ids_array = np.random.randint(low=0, high=6, size=(2, 4, 3, 1)).astype( "int64" ) ids_tensor.set(ids_array, place) return ids_array def check_result(self, ids_array, result_array): for idx, row in np.ndenumerate(ids_array): assert (row == result_array[idx]).all() class TestEmbedOpError(unittest.TestCase): def test_errors(self): with paddle_static_guard(): with program_guard(Program(), Program()): input_data = np.random.randint(0, 10, (4, 1)).astype("int64") def test_Variable(): # the input type must be Variable fluid.layers.embedding(input=input_data, size=(10, 64)) self.assertRaises(TypeError, test_Variable) def test_input_dtype(): # the input dtype must be int64 input = paddle.static.data( name='x', shape=[4, 1], dtype='float32' ) fluid.layers.embedding(input=input, size=(10, 64)) self.assertRaises(TypeError, test_input_dtype) def test_param_dtype(): # dtype must be float32 or float64 input2 = paddle.static.data( name='x2', shape=[4, 1], dtype='int64' ) fluid.layers.embedding( input=input2, size=(10, 64), dtype='int64' ) self.assertRaises(TypeError, test_param_dtype) input3 = paddle.static.data( name='x3', shape=[4, 1], dtype='int64' ) fluid.layers.embedding( input=input3, size=(10, 64), dtype='float16' ) class TestLookupTableOpInt8(OpTest): def setUp(self): self.op_type = "lookup_table" table = np.random.randint(low=-128, high=127, size=(17, 31)).astype( "int8" ) ids = np.random.randint(0, 17, 4).astype("int64") ids_expand = np.expand_dims(ids, axis=1) self.inputs = {'W': table, 'Ids': ids_expand} self.outputs = {'Out': table[ids]} def test_check_output(self): self.check_output(check_cinn=True) def test_check_grad(self): # since int8 type only be used in test and inference, there is # no gradient implement, so we don't need to test it pass class TestLookupTableOpWithTensorIdsInt8(OpTest): def setUp(self): self.op_type = "lookup_table" table = np.random.randint(low=-128, high=127, size=(17, 31)).astype( "int8" ) ids = np.random.randint(low=0, high=17, size=(2, 4, 5, 1)).astype( "int64" ) self.inputs = {'W': table, 'Ids': ids} self.outputs = {'Out': table[ids.flatten()].reshape((2, 4, 5, 31))} def test_check_output(self): self.check_output(check_cinn=True) def test_check_grad(self): # since int8 type only be used in test and inference, there is # no gradient implement, so we don't need to test it pass class TestLookupTableOpWithPaddingInt8(TestLookupTableOpInt8): def test_check_output(self): ids = np.squeeze(self.inputs['Ids']) padding_idx = np.random.choice(ids, 1)[0] self.outputs['Out'][ids == padding_idx] = np.zeros(31) self.attrs = {'padding_idx': int(padding_idx)} self.check_output(check_cinn=True) def test_check_grad(self): # Since paddings are not trainable and fixed in forward, the gradient of # paddings makes no sense and we don't test the gradient here. pass class TestLookupTableOpWithTensorIdsAndPaddingInt8( TestLookupTableOpWithTensorIdsInt8 ): def test_check_output(self): ids = self.inputs['Ids'] flatten_idx = ids.flatten() padding_idx = np.random.choice(flatten_idx, 1)[0] self.outputs['Out'][np.squeeze(ids == padding_idx)] = np.zeros(31) self.attrs = {'padding_idx': padding_idx} self.check_output(check_cinn=True) def test_check_grad(self): # Since paddings are not trainable and fixed in forward, the gradient of # paddings makes no sense and we don't test the gradient here. pass class TestLookupTableWIsSelectedRowsInt8(unittest.TestCase): def prepare_ids(self, scope, place): ids_tensor = scope.var('Ids').get_tensor() ids_array = np.array([[0], [4], [3], [5]]).astype("int64") ids_tensor.set(ids_array, place) return ids_array def prepare_w(self, scope, place): rows = [0, 1, 2, 3, 4, 5, 6] row_numel = 12 w_selected_rows = scope.var('W').get_selected_rows() w_selected_rows.set_height(len(rows)) w_selected_rows.set_rows(rows) w_array = np.ones((len(rows), row_numel)).astype("int8") for i in range(len(rows)): w_array[i] *= i w_tensor = w_selected_rows.get_tensor() w_tensor.set(w_array, place) def create_out_tensor(self, scope, place): return scope.var('Out').get_tensor() def check_result(self, ids_array, result_array): # all(): return True if all elements of the iterable are true (or if the iterable is empty) for idx, row in enumerate(ids_array): assert (row[0] == result_array[idx]).all() def check_with_place(self, place): scope = core.Scope() ids_array = self.prepare_ids(scope, place) self.prepare_w(scope, place) out_tensor = self.create_out_tensor(scope, place) # create and run lookup_table operator lookup_table = Operator("lookup_table", W='W', Ids='Ids', Out='Out') lookup_table.run(scope, place) # get result from Out result_array = np.array(out_tensor) self.check_result(ids_array, result_array) def test_w_is_selected_rows(self): places = [core.CPUPlace()] # currently only support CPU for place in places: self.check_with_place(place) class TestLookupTableWithTensorIdsWIsSelectedRowsInt8( TestLookupTableWIsSelectedRowsInt8 ): def prepare_ids(self, scope, place): ids_tensor = scope.var('Ids').get_tensor() ids_array = np.random.randint(low=0, high=6, size=(2, 4, 3, 1)).astype( "int64" ) ids_tensor.set(ids_array, place) return ids_array def check_result(self, ids_array, result_array): for idx, row in np.ndenumerate(ids_array): assert (row == result_array[idx]).all() @skip_check_grad_ci(reason="Int16 type only be used in test and inference.") class TestLookupTableOpInt16(OpTest): def setUp(self): self.op_type = "lookup_table" table = np.random.randint(low=-128, high=127, size=(17, 31)).astype( "int16" ) ids = np.random.randint(0, 17, 4).astype("int64") ids_expand = np.expand_dims(ids, axis=1) self.inputs = {'W': table, 'Ids': ids_expand} self.outputs = {'Out': table[ids]} def test_check_output(self): self.check_output(check_cinn=True) @skip_check_grad_ci(reason="Int16 type only be used in test and inference.") class TestLookupTableOpWithTensorIdsInt16(OpTest): def setUp(self): self.op_type = "lookup_table" table = np.random.randint(low=-128, high=127, size=(17, 31)).astype( "int16" ) ids = np.random.randint(low=0, high=17, size=(2, 4, 5, 1)).astype( "int64" ) self.inputs = {'W': table, 'Ids': ids} self.outputs = {'Out': table[ids.flatten()].reshape((2, 4, 5, 31))} def test_check_output(self): self.check_output(check_cinn=True) @skip_check_grad_ci(reason="Int16 type only be used in test and inference.") class TestLookupTableOpWithPaddingInt16(TestLookupTableOpInt16): def test_check_output(self): ids = np.squeeze(self.inputs['Ids']) padding_idx = np.random.choice(ids, 1)[0] self.outputs['Out'][ids == padding_idx] = np.zeros(31) self.attrs = {'padding_idx': int(padding_idx)} self.check_output(check_cinn=True) @skip_check_grad_ci(reason="Int16 type only be used in test and inference.") class TestLookupTableOpWithTensorIdsAndPaddingInt16( TestLookupTableOpWithTensorIdsInt16 ): def test_check_output(self): ids = self.inputs['Ids'] flatten_idx = ids.flatten() padding_idx = np.random.choice(flatten_idx, 1)[0] self.outputs['Out'][np.squeeze(ids == padding_idx)] = np.zeros(31) self.attrs = {'padding_idx': padding_idx} self.check_output(check_cinn=True) class TestLookupTableWIsSelectedRowsInt16(unittest.TestCase): def prepare_ids(self, scope, place): ids_tensor = scope.var('Ids').get_tensor() ids_array = np.array([[0], [4], [3], [5]]).astype("int64") ids_tensor.set(ids_array, place) return ids_array def prepare_w(self, scope, place): rows = [0, 1, 2, 3, 4, 5, 6] row_numel = 12 w_selected_rows = scope.var('W').get_selected_rows() w_selected_rows.set_height(len(rows)) w_selected_rows.set_rows(rows) w_array = np.ones((len(rows), row_numel)).astype("int16") for i in range(len(rows)): w_array[i] *= i w_tensor = w_selected_rows.get_tensor() w_tensor.set(w_array, place) def create_out_tensor(self, scope, place): return scope.var('Out').get_tensor() def check_result(self, ids_array, result_array): for idx, row in enumerate(ids_array): assert (row[0] == result_array[idx]).all() def check_with_place(self, place): scope = core.Scope() ids_array = self.prepare_ids(scope, place) self.prepare_w(scope, place) out_tensor = self.create_out_tensor(scope, place) # create and run lookup_table operator lookup_table = Operator("lookup_table", W='W', Ids='Ids', Out='Out') lookup_table.run(scope, place) # get result from Out result_array = np.array(out_tensor) self.check_result(ids_array, result_array) def test_w_is_selected_rows(self): places = [core.CPUPlace()] # currently only support CPU for place in places: self.check_with_place(place) class TestLookupTableWithTensorIdsWIsSelectedRowsInt16( TestLookupTableWIsSelectedRowsInt16 ): def prepare_ids(self, scope, place): ids_tensor = scope.var('Ids').get_tensor() ids_array = np.random.randint(low=0, high=6, size=(2, 4, 3, 1)).astype( "int64" ) ids_tensor.set(ids_array, place) return ids_array def check_result(self, ids_array, result_array): for idx, row in np.ndenumerate(ids_array): assert (row == result_array[idx]).all() class TestOutDtype(unittest.TestCase): def test_dtype(self): api_fn = F.embedding check_out_dtype( api_fn, in_specs=[([10, 16], 'int64'), ([100, 64],)], expect_dtypes=['float32', 'float64'], target_index=1, ) if __name__ == "__main__": unittest.main()