# Performance for distributed vgg16 ## Test Result ### Hardware Infomation - CPU: Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz - cpu MHz : 2101.000 - cache size : 20480 KB ### Single Node Single Thread - PServer Count: 10 - Trainer Count: 20 - Metrics: samples / sec | Batch Size | 32 | 64 | 128 | 256 | | -- | -- | -- | -- | -- | | PaddlePaddle Fluid | 15.44 | 16.32 | 16.74 | 16.79 | | PaddlePaddle v2 | 15.97 | 17.04 | 17.60 | 17.83 | | TensorFlow | - | - | - | - | ### Different Batch Size - PServer Count: 10 - Trainer Count: 20 - Per trainer CPU Core: 1 - Metrics: samples / sec | Batch Size | 32 | 64 | 128 | 256 | | -- | -- | -- | -- | -- | | PaddlePaddle Fluid | 190.20 | 222.15 | 247.40 | 258.18 | | PaddlePaddle v2 | 170.96 | 233.71 | 256.14 | 329.23 | | TensorFlow | - | - | - | - | ### Accelerate Rate - Pserver Count: 20 - Batch Size: 128 - Metrics: samples / sec | Trainer Count | 20 | 40 | 80 | 100 | | -- | -- | -- | -- | -- | | PaddlePaddle Fluid | 263.29 (78.64%) | 518.80 (77.47%) | 836.26 (62.44%) | 1019.29 (60.89%) | | PaddlePaddle v2 (need more tests) | 326.85 (92.85%) | 534.58 (75.93%) | 853.30 (60.60%) | 1041.99 (59.20%) | | TensorFlow | - | - | - | - | ### Different Pserver Count - Trainer Count: 60 - Batch Size: 128 - Metrics: mini-batch / sec | PServer Count | 3 | 6 |10 | 20 | | -- | -- | -- | -- | -- | | PaddlePaddle Fluid(should fix in next PR) | 589.1 | 592.6 | 656.4 | 655.8 | | PaddlePaddle v2 | 593.4 | 791.3 | 729.7 | 821.7 | | TensorFlow | - | - | - | - | *The performance gap between Fuild and v2 comes from the network interference.* ## Steps to run the performance test 1. You must re-compile PaddlePaddle and enable `-DWITH_DISTRIBUTE` to build PaddlePaddle with distributed support. 1. When the build finishes, copy the output `whl` package located under `build/python/dist` to current directory. 1. Run `docker build -t [image:tag] .` to build the docker image and run `docker push [image:tag]` to push the image to reponsitory so kubernetes can find it. 1. Run `kubectl create -f pserver.yaml && kubectl create -f trainer.yaml` to start the job on your kubernetes cluster (you must configure the `kubectl` client before this step). 1. Run `kubectl get po` to get running pods, and run `kubectl logs [podID]` to fetch the pod log of pservers and trainers. Check the logs for the distributed training progress and analyze the performance. ## Enable verbos logs Edit `pserver.yaml` and `trainer.yaml` and add an environment variable `GLOG_v=3` to see what happend in detail.