# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import reduce import paddle from paddle.fluid.framework import dygraph_only, _dygraph_tracer, _varbase_creator, in_dygraph_mode from paddle import _C_ops #input==output, inplace strategy of reshape has no cost almostly def _inplace_reshape_dygraph(x, shape): x_shape = _varbase_creator(dtype='int64') if in_dygraph_mode(): with paddle.fluid.dygraph.no_grad(): tmp_out, _ = _C_ops.reshape2(x, None, 'shape', shape) tmp_out._share_underline_tensor_to(x) else: _dygraph_tracer().trace_op( type="reshape2", inputs={'X': x}, outputs={'Out': x, 'XShape': x_shape}, attrs={'shape': shape}, stop_gradient=True) @dygraph_only def _stride_column(param): """ A tool function. Permute date of parameter as a 'columns' stride. Now, it only support 2-D parameter. Args: param(Tensor]): The param that will be strided according to 'columns'. Examples: .. code-block:: python import paddle paddle.seed(100) linear = paddle.nn.Linear(2, 3) print(linear.weight) # [[-0.31485492, -1.02896988, 0.45741916], # [-0.65525872, -1.04643178, 1.07262802]] paddle.nn.utils.stride_column(linear.weight) print(linear.weight) # [[-0.31485492, 0.45741916, -1.04643178], # [-1.02896988, -0.65525872, 1.07262802]] """ assert len(param.shape) == 2 shape = [param.shape[1], param.shape[0]] with paddle.fluid.dygraph.no_grad(): reshape_var = paddle.reshape(param, shape) transpose_var = paddle.transpose(reshape_var, [1, 0]) transpose_var._share_underline_tensor_to(param) @dygraph_only def parameters_to_vector(parameters, name=None): """ Flatten parameters to a 1-D Tensor. Args: parameters(Iterable[Tensor]): Iterable Tensors that are trainable parameters of a Layer. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: A 1-D Tensor, which represents the parameters of a Layer. Examples: .. code-block:: python import paddle linear = paddle.nn.Linear(10, 15) paddle.nn.utils.parameters_to_vector(linear.parameters()) # 1-D Tensor: [165] """ dtype = parameters[0].dtype origin_shapes = [] for param in parameters: origin_shapes.append(param.shape) _inplace_reshape_dygraph(param, [-1]) out = _varbase_creator(dtype=dtype) if in_dygraph_mode(): with paddle.fluid.dygraph.no_grad(): tmp = _varbase_creator() _C_ops.concat(parameters, tmp, 'axis', 0) tmp._share_underline_tensor_to(out) else: _dygraph_tracer().trace_op( type='concat', inputs={'X': parameters}, outputs={'Out': [out]}, attrs={'axis': 0}, stop_gradient=True) for i, param in enumerate(parameters): _inplace_reshape_dygraph(param, origin_shapes[i]) return out @dygraph_only def vector_to_parameters(vec, parameters, name=None): """ Transform a 1-D Tensor to the input ``parameters`` . Args: vec (Tensor): A 1-D Tensor, which will be sliced and copied to the input ``parameters`` . parameters (Iterable[Tensor]): Iterable Tensors that are trainable parameters of a Layer. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Examples: .. code-block:: python import paddle weight_attr = paddle.ParamAttr(initializer=paddle.nn.initializer.Constant(3.)) linear1 = paddle.nn.Linear(10, 15, weight_attr) vec = paddle.nn.utils.parameters_to_vector(linear1.parameters()) linear2 = paddle.nn.Linear(10, 15) # copy weight of linear1 to linear2 paddle.nn.utils.vector_to_parameters(vec, linear2.parameters()) # weight: Tensor(shape=[10, 15], dtype=float32, place=CUDAPlace(0), stop_gradient=False, # [[3. , ..., 3. ], # [..., ..., ...], # [3. , ..., 3. ]]) """ origin_shapes = [] sections = [] for param in parameters: shape = param.shape origin_shapes.append(shape) numel = reduce(lambda x, y: x * y, shape) sections.append(numel) if in_dygraph_mode(): with paddle.fluid.dygraph.no_grad(): res = [_varbase_creator() for n in range(len(parameters))] _C_ops.split(vec, res, 'axis', 0, 'sections', sections) for i in range(0, len(res)): res[i]._share_underline_tensor_to(parameters[i]) else: _dygraph_tracer().trace_op( type='split', inputs={'X': [vec]}, outputs={'Out': parameters}, attrs={'axis': 0, 'sections': sections}, stop_gradient=True) for i, param in enumerate(parameters): _inplace_reshape_dygraph(param, origin_shapes[i]) return