/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "glog/logging.h" #include "paddle/phi/common/amp_type_traits.h" #include "paddle/phi/common/complex.h" #include "paddle/phi/common/float16.h" #include "paddle/phi/core/dense_tensor.h" #include "paddle/phi/core/tensor_utils.h" #include "paddle/phi/kernels/full_kernel.h" #include "paddle/phi/kernels/funcs/broadcast_function.h" #include "paddle/phi/kernels/funcs/eigen/common.h" #include "paddle/phi/kernels/funcs/elementwise_functor.h" namespace phi { template void AddGradImpl(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y, const DenseTensor& out_grad, int axis, DenseTensor* x_grad, DenseTensor* y_grad, GradFunc grad_func) { phi::funcs::ElementwiseGradPreProcess(out_grad, x_grad); auto* out = &out_grad; // Special case when y_grad is not needed and x_grad doesn't reduce if (x_grad != nullptr && y_grad == nullptr && x_grad->dims() == out_grad.dims()) { VLOG(4) << "Special case when y_grad is not needed and x_grad doesn't " "reduce"; phi::Copy(dev_ctx, out_grad, dev_ctx.GetPlace(), false, x_grad); } else if (x_grad == nullptr && y_grad != nullptr && y_grad->dims() == out_grad.dims()) { VLOG(4) << "Special case when x_grad is not needed and y_grad doesn't " "reduce"; phi::Copy(dev_ctx, out_grad, dev_ctx.GetPlace(), false, y_grad); } else { grad_func(dev_ctx, x, y, *out, out_grad, x_grad, y_grad, axis); } } template void AddDoubleGradImpl(const Context& dev_ctx, const DenseTensor& y, const paddle::optional& ddx, const paddle::optional& ddy, const DenseTensor& dout, int axis, DenseTensor* ddout) { // ddOut = ddx + ddy if (ddout) { DenseTensor ddx_safe, ddy_safe; funcs::GetDoubleGradSafeTensor( dev_ctx, dout, ddx.get_ptr(), &ddx_safe); funcs::GetDoubleGradSafeTensor( dev_ctx, y, ddy.get_ptr(), &ddy_safe); dev_ctx.template Alloc(ddout); auto ddx_dims = ddx_safe.dims(); auto ddy_dims = ddy_safe.dims(); if (ddx_dims.size() >= ddy_dims.size()) { funcs::ElementwiseCompute, T>( dev_ctx, ddx_safe, ddy_safe, funcs::AddFunctor(), ddout, axis); } else { funcs::ElementwiseCompute, T>( dev_ctx, ddx_safe, ddy_safe, funcs::InverseAddFunctor(), ddout, axis); } } } template void SubtractDoubleGradImpl(const Context& dev_ctx, const DenseTensor& y, const paddle::optional& ddx, const paddle::optional& ddy, const DenseTensor& dout, int axis, DenseTensor* ddout) { // DDOut = ddx - ddy if (ddout) { DenseTensor ddx_safe, ddy_safe; funcs::GetDoubleGradSafeTensor( dev_ctx, dout, ddx.get_ptr(), &ddx_safe); funcs::GetDoubleGradSafeTensor( dev_ctx, y, ddy.get_ptr(), &ddy_safe); dev_ctx.template Alloc(ddout); funcs::ElementwiseCompute, T>( dev_ctx, ddx_safe, ddy_safe, funcs::SubtractFunctor(), ddout, axis); } } /* ****************************** Divide Grad ****************************** */ template struct DivGradDX { HOSTDEVICE T operator()(T x UNUSED, T y, T out UNUSED, T dout) const { return dout / y; } }; template struct DivGradDX> { HOSTDEVICE phi::dtype::complex operator()( phi::dtype::complex x, phi::dtype::complex y, phi::dtype::complex out, phi::dtype::complex dout) const { phi::dtype::complex y_conj(y.real, -y.imag); return dout / y_conj; } }; template struct DivGradDY { HOSTDEVICE T operator()(T x UNUSED, T y, T out, T dout) const { return -dout * out / y; } }; template struct DivGradDY> { HOSTDEVICE phi::dtype::complex operator()( phi::dtype::complex x, phi::dtype::complex y, phi::dtype::complex out, phi::dtype::complex dout) const { phi::dtype::complex out_div_y_conj((out / y).real, -(out / y).imag); return -dout * out_div_y_conj; } }; template struct DivDoubleDY { HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return y * out * dout - x * dout; } }; template void DivideDoubleGradKernel(const Context& dev_ctx, const DenseTensor& y, const DenseTensor& out, const DenseTensor& dx, const paddle::optional& ddx, const paddle::optional& ddy, int axis, DenseTensor* dy, DenseTensor* dout, DenseTensor* ddout) { if (dy) { dy->Resize(y.dims()); dev_ctx.template Alloc(dy); } if (dout) { dout->Resize(out.dims()); dev_ctx.template Alloc(dout); } if (ddout) { ddout->Resize(out.dims()); dev_ctx.template Alloc(ddout); } // ddX_safe == null ? 0 : ddX // ddY_safe == null ? 0 : ddY DenseTensor ddX_safe, ddY_safe; phi::funcs::GetDoubleGradSafeTensor( dev_ctx, dx, ddx.get_ptr(), &ddX_safe); phi::funcs::GetDoubleGradSafeTensor( dev_ctx, y, ddy.get_ptr(), &ddY_safe); // ddOut = ddX / Y - Out * ddY / Y = (ddX - Out * ddY) / Y // dY = Out * dX * ddY / Y - dX * ddX / Y // dOut = - dX * ddY // To save memory, (1) dout can be used as 'tmp' tensor, (2) ddout can // inplace ddx DenseTensor tmp; if (dout) { tmp = *dout; } else { tmp.Resize(out.dims()); dev_ctx.template Alloc(&tmp); } if (dy) { // dX_div_Y = dX / Y; DenseTensor dX_div_Y = tmp; funcs::DefaultElementwiseOperator, funcs::InverseDivideFunctor>( dev_ctx, dx, y, &dX_div_Y, axis); // NOTE(dengkaipeng): in the following ElemwiseGradCompute, for the // first output tensor is nullptr, the branch to calculate first // output tensor will not be activated, DivGradDx function will not // be called and can be ignored, the first branch has little effect // on running speed. // dY = Out * dX * ddY / Y - dX * ddX / Y phi::funcs::ElemwiseGradCompute, DivDoubleDY>( dev_ctx, ddX_safe, ddY_safe, out, dX_div_Y, axis, nullptr, dy, DivGradDX(), DivDoubleDY()); } if (ddout) { // ddOut = ddX / Y - Out * ddY / Y = (ddX - Out * ddY) / Y funcs::DefaultElementwiseOperator, funcs::InverseMultiplyFunctor>( dev_ctx, out, ddY_safe, &tmp, axis); funcs::DefaultElementwiseOperator, funcs::InverseSubtractFunctor>( dev_ctx, ddX_safe, tmp, &tmp, axis); funcs::DefaultElementwiseOperator, funcs::InverseDivideFunctor>( dev_ctx, tmp, y, ddout, axis); } if (dout) { // dOut = - dX * ddY funcs::DefaultElementwiseOperator, funcs::InverseMultiplyFunctor>( dev_ctx, dx, ddY_safe, dout, axis); auto& place = *dev_ctx.eigen_device(); auto dout_result = phi::EigenVector::Flatten(*dout); dout_result.device(place) = static_cast(-1) * dout_result; } } template void ElementwiseFMaxGradKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y, const DenseTensor& out_grad, DenseTensor* x_grad, DenseTensor* y_grad) { funcs::ElementwiseGradPreProcess(out_grad, x_grad); auto out = out_grad; // Fake out, not used auto x_dim = x.dims(); auto y_dim = y.dims(); int axis = -1; if (x.dims() == y.dims()) { funcs::ElemwiseGradComputeNoBroadcast, funcs::FMaxGradDy>( dev_ctx, x_dim, y_dim, x, y, out, out_grad, axis, x_grad, y_grad, funcs::FMaxGradDx(), funcs::FMaxGradDy()); } else { funcs::ElemwiseGradComputeWithBroadcast, funcs::FMaxGradDy>( dev_ctx, x_dim, y_dim, x, y, out, out_grad, axis, x_grad, y_grad, funcs::FMaxGradDx(), funcs::FMaxGradDy()); } } template void ElementwiseFMinGradKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y, const DenseTensor& out_grad, DenseTensor* x_grad, DenseTensor* y_grad) { funcs::ElementwiseGradPreProcess(out_grad, x_grad); auto out = out_grad; // Fake out, not used auto x_dim = x.dims(); auto y_dim = y.dims(); int axis = -1; if (x.dims() == y.dims()) { funcs::ElemwiseGradComputeNoBroadcast, funcs::FMinGradDy>( dev_ctx, x_dim, y_dim, x, y, out, out_grad, axis, x_grad, y_grad, funcs::FMinGradDx(), funcs::FMinGradDy()); } else { funcs::ElemwiseGradComputeWithBroadcast, funcs::FMinGradDy>( dev_ctx, x_dim, y_dim, x, y, out, out_grad, axis, x_grad, y_grad, funcs::FMinGradDx(), funcs::FMinGradDy()); } } template struct MulGradDX { HOSTDEVICE T operator()(T x UNUSED, T y, T out UNUSED, T dout) const { return dout * y; } }; // avoid [-Wint-in-bool-context] warning template <> struct MulGradDX { HOSTDEVICE bool operator()(bool x UNUSED, bool y, bool out UNUSED, bool dout) const { return dout && y; } }; template struct MulGradDX> { HOSTDEVICE phi::dtype::complex operator()( phi::dtype::complex x, phi::dtype::complex y, phi::dtype::complex out, phi::dtype::complex dout) const { phi::dtype::complex y_conj(y.real, -y.imag); return dout * y_conj; } }; /* ****************************** Multiply Grad ****************************** */ template struct MulGradDY { HOSTDEVICE T operator()(T x, T y UNUSED, T out UNUSED, T dout) const { return dout * x; } }; // avoid [-Wint-in-bool-context] warning template <> struct MulGradDY { HOSTDEVICE bool operator()(bool x, bool y UNUSED, bool out UNUSED, bool dout) const { return dout && x; } }; template struct MulGradDY> { HOSTDEVICE phi::dtype::complex operator()( phi::dtype::complex x, phi::dtype::complex y, phi::dtype::complex out, phi::dtype::complex dout) const { phi::dtype::complex x_conj(x.real, -x.imag); return dout * x_conj; } }; template void MultiplyDoubleGradKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y, const DenseTensor& dout, const paddle::optional& ddx, const paddle::optional& ddy, int axis, DenseTensor* dx, DenseTensor* dy, DenseTensor* ddout) { if (ddout) dev_ctx.template Alloc(ddout); DenseTensor ddx_safe, ddy_safe; funcs::GetDoubleGradSafeTensor( dev_ctx, x, ddx.get_ptr(), &ddx_safe); funcs::GetDoubleGradSafeTensor( dev_ctx, y, ddy.get_ptr(), &ddy_safe); // dx = dout * ddy // dy = dout * ddx // ddout = ddx * y + x * ddy // change computation sequence to save memory, so ddout can inplace ddx and // dx can be used as 'tmp' tensor // (1) dx = x * ddy // (2) dy = dout * ddx // (3) ddout = ddx * y // (4) ddout = ddout + dx // (5) dx = dout * ddy if (ddout) { auto& place = *dev_ctx.eigen_device(); // size(ddout) > size(ddx) or we don't have ddx, ddout can't use memory of // ddx using inplace bool without_ddx = (ddx.get_ptr() == nullptr); if (!without_ddx) { without_ddx = (ddout->numel() > ddx.get_ptr()->numel()); } if (without_ddx) { phi::funcs::ElemwiseGradCompute, MulGradDY>( dev_ctx, ddx_safe, ddy_safe, dout, dout, axis, dx, dy, MulGradDX(), MulGradDY()); DenseTensor ddout_tmp; ddout_tmp.Resize(ddout->dims()); dev_ctx.template Alloc(&ddout_tmp); funcs::DefaultElementwiseOperator, funcs::InverseMultiplyFunctor>( dev_ctx, y, ddx_safe, ddout, axis); funcs::DefaultElementwiseOperator, funcs::InverseMultiplyFunctor>( dev_ctx, ddy_safe, x, &ddout_tmp, axis); auto ddout_t = phi::EigenVector::Flatten(*ddout); auto ddout_tmp_t = phi::EigenVector::Flatten(ddout_tmp); ddout_t.device(place) = ddout_t + ddout_tmp_t; } else { // use dx to save memory, other than alloc tmp tensor if (dx) { DenseTensor* ddout_tmp = dx; funcs::DefaultElementwiseOperator, funcs::InverseMultiplyFunctor>( dev_ctx, x, ddy_safe, ddout_tmp, axis); // NOTE: in the following ElemwiseGradCompute, for the // first output tensor is nullptr, the branch to calculate first // output tensor will not be activated, DivGradDx function will not // be called and can be ignored, the first branch has little effect // on running speed. phi::funcs::ElemwiseGradCompute, MulGradDY>( dev_ctx, ddx_safe, ddy_safe, dout, dout, axis, nullptr, dy, MulGradDX(), MulGradDY()); funcs::DefaultElementwiseOperator, funcs::InverseMultiplyFunctor>( dev_ctx, ddx_safe, y, ddout, axis); auto ddout_t = phi::EigenVector::Flatten(*ddout); auto ddout_tmp_t = phi::EigenVector::Flatten(*ddout_tmp); ddout_t.device(place) = ddout_t + ddout_tmp_t; funcs::DefaultElementwiseOperator, funcs::InverseMultiplyFunctor>( dev_ctx, dout, ddy_safe, dx, axis); } else if ((!dx) && dy) { DenseTensor tmp_a(ddout->dtype()); tmp_a.Resize(ddout->dims()); dev_ctx.template Alloc(&tmp_a); funcs::DefaultElementwiseOperator, funcs::InverseMultiplyFunctor>( dev_ctx, x, ddy_safe, &tmp_a, axis); auto ddout_t1 = phi::EigenVector::Flatten(tmp_a); funcs::DefaultElementwiseOperator, funcs::InverseMultiplyFunctor>( dev_ctx, ddx_safe, y, ddout, axis); auto ddout_t2 = phi::EigenVector::Flatten(*ddout); ddout_t2.device(place) = ddout_t2 + ddout_t1; // NOTE: in the following ElemwiseGradCompute, for the // first output tensor is nullptr, the branch to calculate first // output tensor will not be activated, DivGradDx function will not // be called and can be ignored, the first branch has little effect // on running speed. phi::funcs::ElemwiseGradCompute, MulGradDY>( dev_ctx, ddx_safe, ddy_safe, dout, dout, axis, nullptr, dy, MulGradDX(), MulGradDY()); } else { DenseTensor tmp_a(ddout->dtype()); tmp_a.Resize(ddout->dims()); dev_ctx.template Alloc(&tmp_a); funcs::DefaultElementwiseOperator, funcs::InverseMultiplyFunctor>( dev_ctx, x, ddy_safe, &tmp_a, axis); auto ddout_t1 = phi::EigenVector::Flatten(tmp_a); funcs::DefaultElementwiseOperator, funcs::InverseMultiplyFunctor>( dev_ctx, ddx_safe, y, ddout, axis); auto ddout_t2 = phi::EigenVector::Flatten(*ddout); ddout_t2.device(place) = ddout_t2 + ddout_t1; } } } else { VLOG(3) << "Calculating here with dx: " << dx << ", dy: " << dy; phi::funcs::ElemwiseGradCompute, MulGradDY>( dev_ctx, ddx_safe, ddy_safe, dout, dout, axis, dx, dy, MulGradDX(), MulGradDY()); } } template void MultiplyTripleGradKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y, const DenseTensor& dout, const paddle::optional& ddx, const paddle::optional& ddy, const paddle::optional& d_dx, const paddle::optional& d_dy, const paddle::optional& d_ddout, int axis, DenseTensor* d_x, DenseTensor* d_y, DenseTensor* d_dout, DenseTensor* d_ddx, DenseTensor* d_ddy) { if (d_x) { d_x->Resize(x.dims()); dev_ctx.template Alloc(d_x); } if (d_y) { d_y->Resize(y.dims()); dev_ctx.template Alloc(d_y); } if (d_dout) { d_dout->Resize(dout.dims()); dev_ctx.template Alloc(d_dout); } if (d_ddx) { d_ddx->Resize(x.dims()); dev_ctx.template Alloc(d_ddx); } if (d_ddy) { d_ddy->Resize(y.dims()); dev_ctx.template Alloc(d_ddy); } auto& place = *dev_ctx.eigen_device(); DenseTensor ddx_safe, ddy_safe; funcs::GetDoubleGradSafeTensor( dev_ctx, x, ddx.get_ptr(), &ddx_safe); funcs::GetDoubleGradSafeTensor( dev_ctx, y, ddy.get_ptr(), &ddy_safe); if (d_ddout.get_ptr()) { if (d_x) { // d_x = ddy * d_ddout funcs::DefaultElementwiseOperator, funcs::InverseMultiplyFunctor>( dev_ctx, ddy_safe, *(d_ddout.get_ptr()), d_x, axis); } if (d_y) { // d_y = ddx * d_ddout funcs::DefaultElementwiseOperator, funcs::InverseMultiplyFunctor>( dev_ctx, ddx_safe, *(d_ddout.get_ptr()), d_y, axis); } } else { if (d_x) { FullLikeKernel(dev_ctx, x, Scalar(0.0), x.dtype(), d_x); } if (d_y) { FullLikeKernel(dev_ctx, y, Scalar(0.0), y.dtype(), d_y); } } if (d_dout) { // get d_dout // d_dout = ddy * d_dx + d_dy * ddx DenseTensor d_dout_tmp; d_dout_tmp.Resize(dout.dims()); dev_ctx.template Alloc(&d_dout_tmp); if (d_dy && d_dx) { funcs::DefaultElementwiseOperator, funcs::InverseMultiplyFunctor>( dev_ctx, d_dy.get(), ddx_safe, d_dout, axis); funcs::DefaultElementwiseOperator, funcs::InverseMultiplyFunctor>( dev_ctx, ddy_safe, d_dx.get(), &d_dout_tmp, axis); auto d_dout_t = phi::EigenVector::Flatten(*d_dout); auto d_dout_tmp_t = phi::EigenVector::Flatten(d_dout_tmp); d_dout_t.device(place) = d_dout_t + d_dout_tmp_t; } else if (d_dy && !d_dx) { funcs::DefaultElementwiseOperator, funcs::InverseMultiplyFunctor>( dev_ctx, d_dy.get(), ddx_safe, d_dout, axis); auto d_dout_t = phi::EigenVector::Flatten(*d_dout); d_dout_t.device(place) = d_dout_t; } else if (!d_dy && d_dx) { funcs::DefaultElementwiseOperator, funcs::InverseMultiplyFunctor>( dev_ctx, ddy_safe, d_dx.get(), d_dout, axis); auto d_dout_t = phi::EigenVector::Flatten(*d_dout); d_dout_t.device(place) = d_dout_t; } else { FullLikeKernel( dev_ctx, dout, Scalar(0.0), dout.dtype(), d_dout); } } if (d_ddx && ddx) { // get d_ddx // d_ddx = dout * d_dy + y * d_ddout DenseTensor d_ddx_tmp; d_ddx_tmp.Resize(ddx->dims()); dev_ctx.template Alloc(&d_ddx_tmp); if (d_dy && d_ddout) { funcs::DefaultElementwiseOperator, funcs::InverseMultiplyFunctor>( dev_ctx, dout, d_dy.get(), d_ddx, axis); funcs::DefaultElementwiseOperator, funcs::InverseMultiplyFunctor>( dev_ctx, y, *(d_ddout.get_ptr()), &d_ddx_tmp, axis); auto d_ddx_t = phi::EigenVector::Flatten(*d_ddx); auto d_ddx_tmp_t = phi::EigenVector::Flatten(d_ddx_tmp); d_ddx_t.device(place) = d_ddx_t + d_ddx_tmp_t; } else if (d_dy && !d_ddout) { funcs::DefaultElementwiseOperator, funcs::InverseMultiplyFunctor>( dev_ctx, dout, d_dy.get(), d_ddx, axis); auto d_ddx_t = phi::EigenVector::Flatten(*d_ddx); d_ddx_t.device(place) = d_ddx_t; } else if (!d_dy && d_ddout) { funcs::DefaultElementwiseOperator, funcs::InverseMultiplyFunctor>( dev_ctx, y, *(d_ddout.get_ptr()), d_ddx, axis); auto d_ddx_t = phi::EigenVector::Flatten(*d_ddx); d_ddx_t.device(place) = d_ddx_t; } else { FullLikeKernel(dev_ctx, x, Scalar(0.0), x.dtype(), d_ddx); } } if (d_ddy && ddy) { // get d_ddy // d_ddy = dout * d_dx + x * d_ddout DenseTensor d_ddy_tmp; d_ddy_tmp.Resize(ddy->dims()); dev_ctx.template Alloc(&d_ddy_tmp); if (d_dx && d_ddout) { funcs::DefaultElementwiseOperator, funcs::InverseMultiplyFunctor>( dev_ctx, dout, d_dx.get(), d_ddy, axis); funcs::DefaultElementwiseOperator, funcs::InverseMultiplyFunctor>( dev_ctx, x, *(d_ddout.get_ptr()), &d_ddy_tmp, axis); auto d_ddy_t = phi::EigenVector::Flatten(*d_ddy); auto d_ddy_tmp_t = phi::EigenVector::Flatten(d_ddy_tmp); d_ddy_t.device(place) = d_ddy_t + d_ddy_tmp_t; } else if (d_dx && !d_ddout) { funcs::DefaultElementwiseOperator, funcs::InverseMultiplyFunctor>( dev_ctx, dout, d_dx.get(), d_ddy, axis); auto d_ddy_t = phi::EigenVector::Flatten(*d_ddy); d_ddy_t.device(place) = d_ddy_t; } else if (!d_dx && d_ddout) { funcs::DefaultElementwiseOperator, funcs::InverseMultiplyFunctor>( dev_ctx, x, *(d_ddout.get_ptr()), d_ddy, axis); auto d_ddy_t = phi::EigenVector::Flatten(*d_ddy); d_ddy_t.device(place) = d_ddy_t; } else { FullLikeKernel(dev_ctx, y, Scalar(0.0), y.dtype(), d_ddy); } } } /* ****************************** Maximum Grad ****************************** */ template struct MaxGradDx { HOSTDEVICE T operator()(T x, T y, T out UNUSED, T dout) const { return dout * static_cast(x > y); } }; template struct MaxGradDy { HOSTDEVICE T operator()(T x, T y, T out UNUSED, T dout) const { return dout * static_cast(x <= y); } }; /* ****************************** Minimum Grad ****************************** */ template struct MinGradDx { HOSTDEVICE T operator()(T x, T y, T out UNUSED, T dout) const { return dout * static_cast(x < y); } }; template struct MinGradDy { HOSTDEVICE T operator()(T x, T y, T out UNUSED, T dout) const { return dout * static_cast(x >= y); } }; template struct HeavisideGradDx { HOSTDEVICE T operator()(T x UNUSED, T y UNUSED, T out UNUSED, T dout) const { return dout * static_cast(0); } }; template struct HeavisideGradDy { HOSTDEVICE T operator()(T x, T y UNUSED, T out UNUSED, T dout) const { return dout * static_cast(x == static_cast(0)); } }; template void HeavisideGradKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y, const DenseTensor& dout, DenseTensor* dx, DenseTensor* dy) { funcs::ElementwiseGradPreProcess(dout, dx); phi::funcs:: ElemwiseGradCompute, HeavisideGradDy>( dev_ctx, x, y, dout, dout, -1, dx, dy, HeavisideGradDx(), HeavisideGradDy()); } #if defined(__CUDA_ARCH__) || defined(__HIPCC__) template HOSTDEVICE typename std::enable_if::value, T>::type compute_pow_grad_dx(T x, T y, T out, T dout) { return dout * y * std::pow(static_cast(x), static_cast(y - 1)); } template HOSTDEVICE typename std::enable_if::value, T>::type compute_pow_grad_dx(T x, T y, T out, T dout) { MPType x_val = static_cast(x); MPType y_val = static_cast(y); return static_cast(static_cast(dout) * y_val * std::pow(x_val, y_val - 1)); } template HOSTDEVICE typename std::enable_if::value, T>::type compute_pow_grad_dy(T x, T y, T out, T dout) { return dout * std::log(static_cast(x)) * std::pow(static_cast(x), static_cast(y)); } template HOSTDEVICE typename std::enable_if::value, T>::type compute_pow_grad_dy(T x, T y, T out, T dout) { MPType x_val = static_cast(x); MPType y_val = static_cast(y); return static_cast(static_cast(dout) * std::log(x_val) * std::pow(x_val, y_val)); } #else template HOSTDEVICE T compute_pow_grad_dx(T x, T y, T out UNUSED, T dout) { MPType x_val = static_cast(x); MPType y_val = static_cast(y); return static_cast(static_cast(dout) * y_val * std::pow(x_val, y_val - 1)); } template HOSTDEVICE T compute_pow_grad_dy(T x, T y, T out UNUSED, T dout) { MPType x_val = static_cast(x); MPType y_val = static_cast(y); return static_cast(static_cast(dout) * std::log(x_val) * std::pow(x_val, y_val)); } #endif template struct PowGradDX { using MPType = typename phi::dtype::MPTypeTrait::Type; HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return compute_pow_grad_dx(x, y, out, dout); } }; template struct PowGradDY { using MPType = typename phi::dtype::MPTypeTrait::Type; HOSTDEVICE T operator()(T x, T y, T out, T dout) const { return compute_pow_grad_dy(x, y, out, dout); } }; template void ElementwisePowGradKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& y, const DenseTensor& dout, DenseTensor* dx, DenseTensor* dy) { funcs::ElementwiseGradPreProcess(dout, dx); int axis = -1; phi::funcs::ElemwiseGradCompute, PowGradDY>( dev_ctx, x, y, dout, dout, axis, dx, dy, PowGradDX(), PowGradDY()); } } // namespace phi