# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy import collections import paddle.fluid as fluid import paddle.fluid.core as core from paddle.fluid.initializer import ConstantInitializer from paddle.fluid.param_attr import WeightNormParamAttr class TestWeightNormalization(unittest.TestCase): batch_size = 3 hidden_size = 5 data_desc = (['x', [10], 0], ) @classmethod def setUpClass(cls): cls.set_program() @classmethod def set_program(cls): data = fluid.layers.data( name=cls.data_desc[0][0], shape=cls.data_desc[0][1]) out = fluid.layers.fc(input=data, size=cls.hidden_size, param_attr=WeightNormParamAttr( dim=None, name='weight_norm_param', initializer=ConstantInitializer(1.0)), bias_attr=False, act=None) loss = fluid.layers.reduce_sum(out) fluid.backward.append_backward(loss=loss) cls.fetch_list = [ 'weight_norm_param_g', 'weight_norm_param_v', 'weight_norm_param_g@GRAD' ] def run_program(self): outputs = [] places = [core.CPUPlace()] if core.is_compiled_with_cuda(): places.append(core.CUDAPlace(0)) for place in places: self.set_inputs(place) exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) output = exe.run(fluid.default_main_program(), feed=self.inputs, fetch_list=self.fetch_list, return_numpy=False) outputs.append(output) self.actual_outputs = outputs def set_data(self): self.data = collections.OrderedDict() for desc in self.data_desc: data_name = desc[0] data_shape = desc[1] data_lod_level = desc[2] data_lod = [] for i in range(data_lod_level): lod_level_i = numpy.random.randint( low=1, high=5, size=self.batch_size if i == 0 else lod_level_i[-1]) lod_level_i = [0] + numpy.cumsum(lod_level_i).tolist() data_lod.append(lod_level_i) data_value = numpy.random.random( size=[data_lod[-1][-1] if data_lod else self.batch_size ] + data_shape).astype('float32') self.data[data_name] = (data_value, data_lod) def set_inputs(self, place): self.inputs = {} for desc in self.data_desc: tensor = fluid.Tensor() tensor.set(self.data[desc[0]][0], place) if self.data[desc[0]][1]: tensor.set_lod(self.data[desc[0]][1]) self.inputs[desc[0]] = tensor def weight_normalize(self): v = numpy.ones((self.data[self.data_desc[0][0]][0].shape[-1], self.hidden_size)) g = numpy.linalg.norm(v, axis=None, keepdims=True) w = g * v / numpy.linalg.norm(v, axis=None, keepdims=True) x = self.data[self.data_desc[0][0]][0] out = numpy.dot(x, w) g_grad = (numpy.dot(x.T, numpy.ones_like(out)) * (v / numpy.linalg.norm( v, axis=None, keepdims=True))).sum(axis=None, keepdims=True) return g, v, g_grad def test_weight_normalization(self): self.set_data() self.run_program() expect_output = self.weight_normalize() for actual_output in self.actual_outputs: [ self.assertTrue( numpy.allclose( numpy.array(actual), expect, atol=0.001)) for expect, actual in zip(expect_output, actual_output) ] if __name__ == '__main__': unittest.main()