# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from op_test import OpTest def max_pool3D_forward_naive(x, ksize, strides, paddings, global_pool=False): N, C, D, H, W = x.shape if global_pool: ksize = [D, H, W] paddings = [0, 0, 0] D_out = (D - ksize[0] + 2 * paddings[0]) / strides[0] + 1 H_out = (H - ksize[1] + 2 * paddings[1]) / strides[1] + 1 W_out = (W - ksize[2] + 2 * paddings[2]) / strides[2] + 1 out = np.zeros((N, C, D_out, H_out, W_out)) mask = np.zeros((N, C, D_out, H_out, W_out)) for k in xrange(D_out): d_start = np.max((k * strides[0] - paddings[0], 0)) d_end = np.min((k * strides[0] + ksize[0] - paddings[0], D)) for i in xrange(H_out): h_start = np.max((i * strides[0] - paddings[0], 0)) h_end = np.min((i * strides[0] + ksize[0] - paddings[0], H)) for j in xrange(W_out): w_start = np.max((j * strides[1] - paddings[1], 0)) w_end = np.min((j * strides[1] + ksize[1] - paddings[1], W)) x_masked = x[:, :, d_start:d_end, h_start:h_end, w_start:w_end] out[:, :, k, i, j] = np.max(x_masked, axis=(2, 3, 4)) for n in xrange(N): for c in xrange(C): arr = x_masked[n, c, :, :, :] index = np.where(arr == np.max(arr)) sub_deep = index[0][0] sub_row = index[1][0] sub_col = index[2][0] index = ((d_start + sub_deep) * H + (h_start + sub_row)) * W + w_start + sub_col mask[n, c, k, i, j] = index return out, mask def max_pool2D_forward_naive(x, ksize, strides, paddings, global_pool=False): N, C, H, W = x.shape if global_pool: ksize = [H, W] paddings = [0, 0] H_out = (H - ksize[0] + 2 * paddings[0]) / strides[0] + 1 W_out = (W - ksize[1] + 2 * paddings[1]) / strides[1] + 1 out = np.zeros((N, C, H_out, W_out)) mask = np.zeros((N, C, H_out, W_out)) for i in xrange(H_out): for j in xrange(W_out): r_start = np.max((i * strides[0] - paddings[0], 0)) r_end = np.min((i * strides[0] + ksize[0] - paddings[0], H)) c_start = np.max((j * strides[1] - paddings[1], 0)) c_end = np.min((j * strides[1] + ksize[1] - paddings[1], W)) x_masked = x[:, :, r_start:r_end, c_start:c_end] out[:, :, i, j] = np.max(x_masked, axis=(2, 3)) for n in xrange(N): for c in xrange(C): arr = x_masked[n, c, :, :] index = np.where(arr == np.max(arr)) sub_row = index[0][0] sub_col = index[1][0] index = (r_start + sub_row) * W + c_start + sub_col mask[n, c, i, j] = index return out, mask class TestMaxPoolWithIndex_Op(OpTest): def setUp(self): self.init_test_case() self.init_global() input = np.random.random(self.shape).astype("float32") output, mask = self.pool_forward_naive(input, self.ksize, self.strides, self.paddings, self.global_pool) output = output.astype("float32") mask = mask.astype("int32") self.attrs = { 'strides': self.strides, 'paddings': self.paddings, 'ksize': self.ksize, 'global_pooling': self.global_pool, } self.inputs = {'X': input} self.outputs = {'Out': output, "Mask": mask} def test_check_output(self): self.check_output() # def test_check_grad(self): # self.check_grad(set(['X']), ['Out'], max_relative_error=0.07) def init_test_case(self): self.op_type = "max_pool3d_with_index" self.pool_forward_naive = max_pool3D_forward_naive self.shape = [2, 3, 5, 5, 5] self.ksize = [3, 3, 3] self.strides = [1, 1, 1] self.paddings = [1, 1, 1] def init_global(self): self.global_pool = False class TestCase1(TestMaxPoolWithIndex_Op): def init_global(self): self.global_pool = True class TestCase2(TestMaxPoolWithIndex_Op): def init_test_case(self): self.op_type = "max_pool3d_with_index" self.pool_forward_naive = max_pool3D_forward_naive self.shape = [2, 3, 7, 7, 7] self.ksize = [3, 3, 3] self.strides = [2, 2, 2] self.paddings = [0, 0, 0] def init_global(self): self.global_pool = True class TestCase3(TestCase2): def init_global(self): self.global_pool = False #----------------max_pool2d_with_index---------------- class TestCase4(TestMaxPoolWithIndex_Op): def init_test_case(self): self.op_type = "max_pool2d_with_index" self.pool_forward_naive = max_pool2D_forward_naive self.shape = [2, 3, 7, 7] self.ksize = [3, 3] self.strides = [1, 1] self.paddings = [1, 1] def init_global(self): self.global_pool = True class TestCase5(TestCase4): def init_global(self): self.global_pool = False class TestCase6(TestMaxPoolWithIndex_Op): def init_test_case(self): self.op_type = "max_pool2d_with_index" self.pool_forward_naive = max_pool2D_forward_naive self.shape = [2, 3, 7, 7] self.ksize = [3, 3] self.strides = [2, 2] self.paddings = [0, 0] def init_global(self): self.global_pool = True class TestCase7(TestCase6): def init_global(self): self.global_pool = False if __name__ == '__main__': unittest.main()