# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import math import copy import paddle.fluid.framework as framework import paddle.fluid as fluid import paddle.fluid.layers as layers import paddle.fluid.learning_rate_decay as lr_decay def exponential_decay(learning_rate, global_step, decay_steps, decay_rate, staircase=False): exponent = float(global_step) / float(decay_steps) if staircase: exponent = math.floor(exponent) return learning_rate * decay_rate**exponent def natural_exp_decay(learning_rate, global_step, decay_steps, decay_rate, staircase=False): exponent = float(global_step) / float(decay_steps) if staircase: exponent = math.floor(exponent) return learning_rate * math.exp(-1 * decay_rate * exponent) def inverse_time_decay(learning_rate, global_step, decay_steps, decay_rate, staircase=False): temp = float(global_step) / float(decay_steps) if staircase: temp = math.floor(temp) return learning_rate / (1 + decay_rate * temp) def polynomial_decay(learning_rate, global_step, decay_steps, end_learning_rate=0.0001, power=1.0, cycle=False): if cycle: div = math.ceil(global_step / float(decay_steps)) if div == 0: div = 1 decay_steps = decay_steps * div else: global_step = min(global_step, decay_steps) return (learning_rate - end_learning_rate) * \ ((1 - float(global_step) / float(decay_steps)) ** power) + end_learning_rate def piecewise_decay(global_step, boundaries, values): assert len(boundaries) + 1 == len(values) for i in range(len(boundaries)): if global_step < boundaries[i]: return values[i] return values[len(values) - 1] class TestLearningRateDecay(unittest.TestCase): def check_decay(self, python_decay_fn, fluid_decay_fn, kwargs): global_step = layers.create_global_var( shape=[1], value=0.0, dtype='float32', persistable=True) decayed_lr = fluid_decay_fn(global_step=global_step, **kwargs) layers.increment(global_step, 1.0) place = fluid.CPUPlace() exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) for step in range(10): step_val, lr_val = exe.run(fluid.default_main_program(), feed=[], fetch_list=[global_step, decayed_lr]) python_decayed_lr = python_decay_fn(global_step=step, **kwargs) self.assertAlmostEqual(python_decayed_lr, lr_val[0]) def test_decay(self): common_kwargs_true = { "learning_rate": 1.0, "decay_steps": 5, "decay_rate": 0.5, "staircase": True } common_kwargs_false = copy.deepcopy(common_kwargs_true) common_kwargs_false["staircase"] = False decay_fns = [ (exponential_decay, lr_decay.exponential_decay, common_kwargs_true), (exponential_decay, lr_decay.exponential_decay, common_kwargs_false), (natural_exp_decay, lr_decay.natural_exp_decay, common_kwargs_true), (natural_exp_decay, lr_decay.natural_exp_decay, common_kwargs_false), (inverse_time_decay, lr_decay.inverse_time_decay, common_kwargs_true), (inverse_time_decay, lr_decay.inverse_time_decay, common_kwargs_false), (polynomial_decay, lr_decay.polynomial_decay, { "learning_rate": 1.0, "decay_steps": 5, "cycle": True }), (polynomial_decay, lr_decay.polynomial_decay, { "learning_rate": 1.0, "decay_steps": 5, "cycle": False }), (piecewise_decay, lr_decay.piecewise_decay, { "boundaries": [3, 6, 9], "values": [0.1, 0.2, 0.3, 0.4] }), ] for py_decay_fn, fluid_decay_fn, kwargs in decay_fns: print("decay_fn=" + py_decay_fn.__name__ + " kwargs=" + str(kwargs)) main_program = framework.Program() startup_program = framework.Program() with framework.program_guard(main_program, startup_program): self.check_decay(py_decay_fn, fluid_decay_fn, kwargs) if __name__ == '__main__': unittest.main()