# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle.v2 as paddle import paddle.fluid as fluid import contextlib import numpy import unittest import math import sys def train(use_cuda, save_dirname): x = fluid.layers.data(name='x', shape=[13], dtype='float32') y_predict = fluid.layers.fc(input=x, size=1, act=None) y = fluid.layers.data(name='y', shape=[1], dtype='float32') cost = fluid.layers.square_error_cost(input=y_predict, label=y) avg_cost = fluid.layers.mean(x=cost) sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001) sgd_optimizer.minimize(avg_cost) BATCH_SIZE = 20 train_reader = paddle.batch( paddle.reader.shuffle( paddle.dataset.uci_housing.train(), buf_size=500), batch_size=BATCH_SIZE) place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() feeder = fluid.DataFeeder(place=place, feed_list=[x, y]) exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) PASS_NUM = 100 for pass_id in range(PASS_NUM): for data in train_reader(): avg_loss_value, = exe.run(fluid.default_main_program(), feed=feeder.feed(data), fetch_list=[avg_cost]) print(avg_loss_value) if avg_loss_value[0] < 10.0: if save_dirname is not None: fluid.io.save_inference_model(save_dirname, ['x'], [y_predict], exe) return if math.isnan(float(avg_loss_value)): sys.exit("got NaN loss, training failed.") raise AssertionError("Fit a line cost is too large, {0:2.2}".format( avg_loss_value[0])) def infer(use_cuda, save_dirname=None): if save_dirname is None: return place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() exe = fluid.Executor(place) # Use fluid.io.load_inference_model to obtain the inference program desc, # the feed_target_names (the names of variables that will be feeded # data using feed operators), and the fetch_targets (variables that # we want to obtain data from using fetch operators). [inference_program, feed_target_names, fetch_targets] = fluid.io.load_inference_model(save_dirname, exe) # The input's dimension should be 2-D and the second dim is 13 # The input data should be >= 0 batch_size = 10 tensor_x = numpy.random.uniform(0, 10, [batch_size, 13]).astype("float32") assert feed_target_names[0] == 'x' results = exe.run(inference_program, feed={feed_target_names[0]: tensor_x}, fetch_list=fetch_targets) print("infer shape: ", results[0].shape) print("infer results: ", results[0]) def main(use_cuda): if use_cuda and not fluid.core.is_compiled_with_cuda(): return # Directory for saving the trained model save_dirname = "fit_a_line.inference.model" train(use_cuda, save_dirname) infer(use_cuda, save_dirname) class TestFitALine(unittest.TestCase): def test_cpu(self): with self.program_scope_guard(): main(use_cuda=False) def test_cuda(self): with self.program_scope_guard(): main(use_cuda=True) @contextlib.contextmanager def program_scope_guard(self): prog = fluid.Program() startup_prog = fluid.Program() scope = fluid.core.Scope() with fluid.scope_guard(scope): with fluid.program_guard(prog, startup_prog): yield if __name__ == '__main__': unittest.main()