# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import contextlib from framework import Program, default_main_program from . import core __all__ = [ 'Executor', 'global_scope', 'scope_guard', 'switch_scope', 'fetch_var' ] g_scope = core.Scope() def global_scope(): return g_scope def switch_scope(scope): global g_scope ex = g_scope g_scope = scope return ex @contextlib.contextmanager def scope_guard(scope): ex = switch_scope(scope) yield switch_scope(ex) def as_numpy(tensor): if isinstance(tensor, list): return [as_numpy(t) for t in tensor] assert isinstance(tensor, core.LoDTensor) lod = tensor.lod() if len(lod) > 0: raise RuntimeError( "Some of your featched tensors hold LoD information. \ They can not be completely cast to Python ndarray. \ Please set the parameter 'return_numpy' as 'False' to \ return LoDTensor itself directly.") return np.array(tensor) def has_feed_operators(block, feed_targets, feed_holder_name): """ Check whether the block already has feed operators. Return false if the block does not have any feed operators. If some feed operators have been prepended to the block, check that the info contained in these feed operators matches the feed_targets and feed_holder_name. Raise exception when any mismatch is found. Return true when the block has feed operators with matching info. Args: block: a block instance (typically global block of a program) feed_targets: a dictionary of {feed_target_name: feed_target_data} feed_holder_name: the name of the variable that holds the data of all feed targets. The type of this feed_holder variable is FEED_MINIBATCH, which is essentially vector. Returns: A boolean value that indicates whether a block has feed operators that match the info contained in feed_targets and feed_holder_name. """ feed_count = 0 for op in block.ops: if op.desc.type() == 'feed': feed_count += 1 assert op.desc.input('X')[0] == feed_holder_name feed_target_name = op.desc.output('Out')[0] if feed_target_name not in feed_targets: raise Exception("'feed_targets' does not have {} variable". format(feed_target_name)) else: break if feed_count > 0 and feed_count != len(feed_targets): raise Exception( "Feed operators in program desc do not match 'feed_targets'") return feed_count > 0 def has_fetch_operators(block, fetch_targets, fetch_holder_name): """ Check whether the block already has fetch operators. Return false if the block does not have any fetch operators. If some fetch operators have been appended to the block, check that the info contained in these fetch operators matches the fetch_targets and fetch_holder_name. Raise exception when any mismatch is found. Return true when the block has fetch operators with matching info. Args: block: a block instance (typically global block of a program) fetch_targets: a dictionary of {fetch_target_name: fetch_target_data} fetch_holder_name: the name of the variable that holds the data of all fetch targets. The type of this fetch_holder variable is FETCH_LIST, which is essentially vector. Return: A boolean value that indicates whether a block has fetch operators that match the info contained in fetch_targets and fetch_holder_name. """ fetch_count = 0 for op in block.ops: if op.desc.type() == 'fetch': fetch_count += 1 assert op.desc.output('Out')[0] == fetch_holder_name fetch_target_name = op.desc.input('X')[0] if fetch_target_name not in [ var.desc.name() for var in fetch_targets ]: raise Exception("'fetch_targets' does not have {} variable". format(fetch_target_name)) idx = op.desc.attr('col') assert fetch_target_name == fetch_targets[idx].desc.name() if fetch_count > 0 and fetch_count != len(fetch_targets): raise Exception( "Fetch operators in program desc do not match 'fetch_targets'") return fetch_count > 0 def fetch_var(name, scope=None, return_numpy=True): """ Fetch the value of the variable with the given name from the given scope Args: name(str): name of the variable. Typically, only persistable variables can be found in the scope used for running the program. scope(core.Scope|None): scope object. It should be the scope where you pass to Executor.run() when running your program. If None, global_scope() will be used. return_numpy(bool): whether convert the tensor to numpy.ndarray Returns: LodTensor|numpy.ndarray """ assert isinstance(name, str) if scope is None: scope = global_scope() assert isinstance(scope, core.Scope) var = global_scope().find_var(name) assert var is not None, ( "Cannot find " + name + " in scope. Perhaps you need to make the" " variable persistable by using var.persistable = True in your" " program.") tensor = var.get_tensor() if return_numpy: tensor = as_numpy(tensor) return tensor class Executor(object): def __init__(self, places): if not isinstance(places, list) and not isinstance(places, tuple): places = [places] act_places = [] for each in places: p = core.Place() p.set_place(each) act_places.append(p) # TODO(dzhwinter) : only use the first place self.executor = core.Executor(act_places[0]) self.places = places def aslodtensor(self, data): def accumulate(data): if not isinstance(data, list): return 1 return sum([accumulate(sub) for sub in data]) def parselod(data): seq_lens = [accumulate(seq) for seq in data] cur_len = 0 lod = [cur_len] for l in seq_lens: cur_len += l lod.append(cur_len) return lod assert len(self.places) != 0 if not isinstance(data, list): # pure tensor case tensor = core.LoDTensor() tensor.set(data, self.places[0]) return tensor else: raise RuntimeError("Current implementation lacks unittests") # lodtensor case lod = [] if not isinstance(data[0], list): lod.append(parselod(data)) flattened_data = np.concatenate(data, axis=0).astype("int64") else: while isinstance(data[0], list): lod.append(parselod(seq)) flattened_data = [item for seq in data for item in seq] data = flattened_data flattened_data = np.concatenate(data, axis=0).astype("int64") flattened_data = flattened_data.reshape([len(flattened_data), 1]) tensor = core.LoDTensor() tensor.set(flattened_data, self.places[0]) tensor.set_lod(lod) return tensor def run(self, program=None, feed=None, fetch_list=None, feed_var_name='feed', fetch_var_name='fetch', scope=None, return_numpy=True): if feed is None: feed = {} if fetch_list is None: fetch_list = [] if program is None: program = default_main_program() if not isinstance(program, Program): raise TypeError() if scope is None: scope = global_scope() program = program.clone() global_block = program.global_block() if feed_var_name in global_block.vars: feed_var = global_block.var(feed_var_name) else: feed_var = global_block.create_var( name=feed_var_name, type=core.VarDesc.VarType.FEED_MINIBATCH, persistable=True) if fetch_var_name in global_block.vars: fetch_var = global_block.var(fetch_var_name) else: fetch_var = global_block.create_var( name=fetch_var_name, type=core.VarDesc.VarType.FETCH_LIST, persistable=True) if not has_feed_operators(global_block, feed, feed_var_name): for i, name in enumerate(feed): out = global_block.var(name) global_block.prepend_op( type='feed', inputs={'X': [feed_var]}, outputs={'Out': [out]}, attrs={'col': i}) for op in global_block.ops: if op.desc.type() == 'feed': feed_target_name = op.desc.output('Out')[0] cur_feed = feed[feed_target_name] if not isinstance(cur_feed, core.LoDTensor): cur_feed = self.aslodtensor(cur_feed) idx = op.desc.attr('col') core.set_feed_variable(scope, cur_feed, feed_var_name, idx) else: break if not has_fetch_operators(global_block, fetch_list, fetch_var_name): for i, var in enumerate(fetch_list): global_block.append_op( type='fetch', inputs={'X': [var]}, outputs={'Out': [fetch_var]}, attrs={'col': i}) self.executor.run(program.desc, scope, 0, True, True) outs = [ core.get_fetch_variable(scope, fetch_var_name, i) for i in xrange(len(fetch_list)) ] if return_numpy: outs = as_numpy(outs) return outs