# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import framework from framework import Program, default_main_program, Parameter, Variable import optimizer from layer_helper import LayerHelper def hash_name_to_server(params_grads, pserver_endpoints): """ :param param_grads: :return: a map of pserver endpoint -> params -> [param list] grads -> [grad list] """ def _hash_param(param_name, total): return hash(param_name) % total param_grad_map = dict() for param, grad in params_grads: if param.trainable is True and grad is not None: server_id = _hash_param(param.name, len(pserver_endpoints)) server_for_param = pserver_endpoints[server_id] if not param_grad_map.has_key(server_for_param): param_grad_map[server_for_param] = {"params": [], "grads": []} param_grad_map[server_for_param]["params"].append(param) param_grad_map[server_for_param]["grads"].append(grad) return param_grad_map def round_robin(params_grads, pserver_endpoints): assert (len(params_grads) > len(pserver_endpoints)) param_grad_map = dict() pserver_idx = 0 for param, grad in params_grads: if param.trainable is True: server_for_param = pserver_endpoints[pserver_idx] if not param_grad_map.has_key(server_for_param): param_grad_map[server_for_param] = {"params": [], "grads": []} param_grad_map[server_for_param]["params"].append(param) param_grad_map[server_for_param]["grads"].append(grad) pserver_idx += 1 if pserver_idx >= len(pserver_endpoints): pserver_idx = 0 return param_grad_map class SimpleDistributeTranspiler: def transpile(self, optimize_ops, params_grads, program=None, pservers="127.0.0.1:6174", trainers=1, split_method=round_robin): """ Transpile the program to a distributed data-parallelism programs. The main_program will be transform to use a remote parameter server to do parameter optimization. And the optimization graph will be put in to a parameter server program. Use different methods to split trainable varialbles to different parameter servers. Example to run: exe = fluid.Executor(place) t = fluid.DistributeTranspiler() t.transpile(optimize_ops, params_grads, pservers="127.0.0.1:6174", trainers=1) pserver_endpoint = os.getenv("PSERVER") if pserver_endpoint: pserver_prog = t.get_pserver_program(pserver_endpoint, optimize_ops) exe.run(fluid.default_startup_program()) exe.run(pserver_prog) else: feeder = fluid.DataFeeder(feed_list=[images, label], place=place) exe.run(fluid.default_startup_program()) for pass_id in range(PASS_NUM): ... :param optimize_ops: op list of optimization, should be the return value of Optimizer.minimize :type optimize_ops: list :param program: program to optimize, default default_main_program :param pservers: parameter server endpoints like "m1:6174,m2:6174" :type pservers: string :return: return a list of programs """ if program is None: program = default_main_program() self.program = program self.trainers = trainers self.optimize_ops = optimize_ops self._optimize_distributed( optimize_ops, program, params_grads, pservers=pservers, trainers=trainers, split_method=split_method) def _clone_param(self, block, v): assert isinstance(v, Parameter) new_p = Parameter( block=block, shape=v.shape, dtype=v.dtype, type=v.type, lod_level=v.lod_level, stop_gradient=v.stop_gradient, trainable=v.trainable, optimize_attr=v.optimize_attr, regularizer=v.regularizer, name=v.name) block.vars[new_p.name] = new_p def _clone_var(self, block, var): assert isinstance(var, Variable) return block.create_var( name=var.name, shape=var.shape, dtype=var.dtype, type=var.type, lod_level=var.lod_level, persistable=var.persistable) def _optimize_distributed(self, optimize_ops, program, params_and_grads, **kwargs): if kwargs.has_key("split_method"): split_method = kwargs["split_method"] else: split_method = round_robin assert (callable(split_method)) pserver_endpoints = kwargs["pservers"].split(",") self.param_grad_map = split_method(params_and_grads, pserver_endpoints) send_op_ordered_inputs = [] send_op_ordered_outputs = [] epmap = [] for ep, v in self.param_grad_map.iteritems(): send_op_ordered_inputs.extend(v["grads"]) send_op_ordered_outputs.extend(v["params"]) for i in v["grads"]: epmap.append(ep) send_op = program.global_block().append_op( type="send", inputs={"X": send_op_ordered_inputs }, # inputs is a list of tensors to be send outputs={"Out": send_op_ordered_outputs}, attrs={"endpoints": pserver_endpoints, "epmap": epmap}) def get_trainer_program(self): # remove optimize ops and add a send op to main_program self.program.global_block().delete_ops(self.optimize_ops) return self.program def _create_var_for_trainers(self, block, var, trainers): var_list = [] for i in xrange(trainers): var_each = block.create_var( name="%s.trainer_%d" % (var.name, i), psersistable=var.persistable, dtype=var.dtype, shape=var.shape) var_list.append(var_each) return var_list def get_pserver_program(self, endpoint, optimize_ops): pserver_program = Program() for v in self.param_grad_map[endpoint]["params"]: self._clone_param(pserver_program.global_block(), v) optimize_sub_program = Program() grad_var_names = [ var.name for var in self.param_grad_map[endpoint]["grads"] ] for opt_op in optimize_ops: for _, var in opt_op.inputs.iteritems(): # NOTE: append operators to merge gradients from multiple # trainers. If trainers == 1, this is not needed. if self.trainers > 1 and var.name in grad_var_names: vars2merge = self._create_var_for_trainers( optimize_sub_program.global_block(), var, self.trainers) merged_var = optimize_sub_program.global_block().create_var( name=var.name, persistable=var.persistable, dtype=var.dtype, shape=var.shape) optimize_sub_program.global_block().append_op( type="sum", inputs={"X": vars2merge}, outputs={"Out": merged_var}) optimize_sub_program.global_block().append_op( type="scale", inputs={"X": merged_var}, outputs={"Out": merged_var}, attrs={"scale": 1.0 / float(self.trainers)}) else: optimize_sub_program.global_block().create_var( name=var.name, persistable=var.persistable, dtype=var.dtype, shape=var.shape) if opt_op.inputs.has_key("Grad"): if opt_op.inputs["Grad"].name in grad_var_names: optimize_sub_program.global_block().append_op( type=opt_op.type, inputs=opt_op.inputs, outputs=opt_op.outputs, attrs=opt_op.attrs) else: optimize_sub_program.global_block().append_op( type=opt_op.type, inputs=opt_op.inputs, outputs=opt_op.outputs, attrs=opt_op.attrs) pserver_program.global_block().append_op( type="recv", inputs={"RX": self.param_grad_map[endpoint]["grads"]}, # grads to recv outputs={}, attrs={ "OptimizeBlock": optimize_sub_program.global_block(), "endpoint": endpoint, "ParamList": [p.name for p in self.param_grad_map[endpoint]["params"]], "GradList": [p.name for p in self.param_grad_map[endpoint]["grads"]], "Trainers": self.trainers }) pserver_program.sync_with_cpp() return pserver_program