/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #ifdef PADDLE_WITH_CUDA #include #include #include "paddle/fluid/platform/dynload/curand.h" #endif #ifdef PADDLE_WITH_HIP #include #include #include "paddle/fluid/platform/dynload/hiprand.h" #endif #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/generator.h" #include "paddle/fluid/framework/tensor_util.h" #include "paddle/fluid/operators/amp/fp16_type_traits.h" #include "paddle/fluid/operators/dropout_impl_util.h" #include "paddle/fluid/operators/elementwise/elementwise_op_impl.cu.h" #include "paddle/fluid/platform/aligned_vector.h" #include "paddle/phi/backends/gpu/gpu_launch_config.h" #include "paddle/phi/kernels/funcs/distribution_helper.h" #include "paddle/phi/kernels/funcs/functors.h" namespace paddle { namespace operators { template struct DstMaskGenerator { const float dropout_prob_; const bool is_upscale_in_train_; using MT = typename details::MPTypeTrait::Type; MT factor; HOSTDEVICE inline DstMaskGenerator(const float dropout_prob, const bool is_upscale_in_train) : dropout_prob_(dropout_prob), is_upscale_in_train_(is_upscale_in_train) { factor = static_cast(1.0f / (1.0f - dropout_prob_)); } HOSTDEVICE inline void operator()(OutT* dst, const T1* src_val, const T2* rand, int num) const { static constexpr int kCount = phi::funcs::uniform_distribution::kReturnsCount; // 0 ~ kCount -1 is dist , kCount ~ 2 * kCount - 1 is mask #pragma unroll for (int i = 0; i < kCount; i++) { if (rand[i] < dropout_prob_) { dst[i] = static_cast(0); dst[i + kCount] = dst[i]; } else { dst[i] = is_upscale_in_train_ ? static_cast(static_cast(src_val[i]) * factor) : static_cast(src_val[i]); dst[i + kCount] = static_cast(1); } } } }; template __global__ void VectorizedRandomGenerator(const size_t n, uint64_t seed, const float dropout_prob, const T* src, MaskType* mask, T* dst, bool is_upscale_in_train, uint64_t increment, size_t main_offset) { size_t idx = static_cast(BLOCK_ID_X * BLOCK_NUM_X); static constexpr int kCount = phi::funcs::uniform_distribution::kReturnsCount; size_t stride = BLOCK_NUM_X * GRID_NUM_X * kCount; #ifdef PADDLE_WITH_HIP hiprandStatePhilox4_32_10_t state; hiprand_init(seed, idx + THREAD_ID_X, increment, &state); using SType = hiprandStatePhilox4_32_10_t; #else curandStatePhilox4_32_10_t state; curand_init(seed, idx + THREAD_ID_X, increment, &state); using SType = curandStatePhilox4_32_10_t; #endif T dst_mask[kCount * 2]; // 0 ~ kCount -1 : dst;kCount ~ 2 * kCount - 1: mask float rands[kCount]; MaskType mask_result[kCount]; using Rand = phi::funcs::uniform_distribution; using Cast = kps::IdentityFunctor; int deal_size = BLOCK_NUM_X * kCount; auto dst_functor = DstMaskGenerator(dropout_prob, is_upscale_in_train); size_t fix = idx * kCount; for (; fix < main_offset; fix += stride) { kps::ReadData(&dst_mask[0], src + fix, deal_size); kps::ElementwiseRandom(&rands[0], Rand(), &state); // dst kps::OperatorTernary>( &dst_mask[0], &dst_mask[0], &rands[0], dst_functor, kCount); kps::WriteData(dst + fix, &dst_mask[0], deal_size); // mask kps::ElementwiseUnary( &mask_result[0], &dst_mask[kCount], Cast()); kps::WriteData(mask + fix, &mask_result[0], deal_size); } int remainder = n - fix; if (remainder > 0) { kps::ReadData(&dst_mask[0], src + fix, remainder); kps::ElementwiseRandom(&rands[0], Rand(), &state); // dst kps::OperatorTernary>( &dst_mask[0], &dst_mask[0], &rands[0], dst_functor, kCount); kps::WriteData(dst + fix, &dst_mask[0], remainder); // mask kps::ElementwiseUnary( &mask_result[0], &dst_mask[kCount], Cast()); kps::WriteData(mask + fix, &mask_result[0], remainder); } } template void DropoutFwGPUKernelDriver(const phi::GPUContext& dev_ctx, bool is_test, const std::string dropout_implementation, float dropout_prob, bool upscale_in_train, bool is_fix_seed, int seed_val, const framework::Tensor& x, const framework::Tensor* seed, framework::Tensor* mask, framework::Tensor* y) { auto& place = *dev_ctx.eigen_device(); int64_t x_numel = x.numel(); auto stream = dev_ctx.stream(); auto* x_data = x.data(); auto* y_data = y->data(); if (!is_test) { auto* mask_data = mask->data(); size_t size = phi::product(mask->dims()); if (dropout_prob == 1.0f) { #ifdef PADDLE_WITH_HIP PADDLE_ENFORCE_GPU_SUCCESS( hipMemsetAsync(y_data, 0, x_numel * sizeof(T), stream)); PADDLE_ENFORCE_GPU_SUCCESS( hipMemsetAsync(mask_data, 0, x_numel * sizeof(*mask_data), stream)); #else PADDLE_ENFORCE_GPU_SUCCESS( cudaMemsetAsync(y_data, 0, x_numel * sizeof(T), stream)); PADDLE_ENFORCE_GPU_SUCCESS( cudaMemsetAsync(mask_data, 0, x_numel * sizeof(*mask_data), stream)); #endif return; } // increment is used to set the args(offset) of curand_init, which defines // offset in subsequence. // The detail: // https://docs.nvidia.com/cuda/curand/device-api-overview.html // Increment should be at least the number of curand() random numbers used // in each thread to avoid the random number generated this time being the // same as the previous calls. uint64_t seed_data; uint64_t increment; // VectorizedRandomGenerator use curand_uniform4, so we only support // kVecSize is 4; constexpr int kVecSize = phi::funcs::uniform_distribution::kReturnsCount; auto gpu_config = phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, x_numel, kVecSize); auto offset = ((x_numel - 1) / (gpu_config.GetThreadNum() * kVecSize) + 1) * kVecSize; GetSeedDataAndIncrement(dev_ctx, seed, is_fix_seed, seed_val, offset, &seed_data, &increment); size_t main_offset = size / (gpu_config.GetBlockSize() * kVecSize) * (gpu_config.GetBlockSize() * kVecSize); VectorizedRandomGenerator<<< gpu_config.GetGridSize(), gpu_config.GetBlockSize(), 0, stream>>>( size, seed_data, dropout_prob, x_data, mask_data, y_data, upscale_in_train, increment, main_offset); } else { if (upscale_in_train) { // todo: can y share with data with x directly? #ifdef PADDLE_WITH_HIP PADDLE_ENFORCE_GPU_SUCCESS( hipMemcpyAsync(y_data, x_data, sizeof(T) * x_numel, hipMemcpyDeviceToDevice, stream)); #else PADDLE_ENFORCE_GPU_SUCCESS( cudaMemcpyAsync(y_data, x_data, sizeof(T) * x_numel, cudaMemcpyDeviceToDevice, stream)); #endif } else { using MT = typename details::MPTypeTrait::Type; MT factor = static_cast(1.0f - dropout_prob); std::vector ins = {&x}; std::vector outs = {y}; auto functor = phi::funcs::ScaleFunctor(factor); paddle::operators::LaunchSameDimsElementwiseCudaKernel(dev_ctx, ins, &outs, functor); } } } template struct CudaDropoutGradFunctor { using MT = typename details::MPTypeTrait::Type; explicit CudaDropoutGradFunctor(const MT factor) : factor_(factor) {} __device__ __forceinline__ T operator()(const T dout, const MaskType mask) const { return static_cast(static_cast(dout) * static_cast(mask) * factor_); } private: MT factor_; }; template void DropoutGradGPUKernelDriver(const phi::GPUContext& dev_ctx, const std::string dropout_implementation, float dropout_prob, const framework::Tensor& grad_y, const framework::Tensor& mask, int64_t size, framework::Tensor* grad_x, bool is_test = false) { using MT = typename details::MPTypeTrait::Type; auto stream = dev_ctx.stream(); MT factor; if (is_test) { if (dropout_implementation == "upscale_in_train") { factor = static_cast(1.0f); } else { factor = static_cast(1.0f - dropout_prob); } std::vector ins = {&grad_y}; std::vector outs = {grad_x}; auto functor = phi::funcs::ScaleFunctor(factor); paddle::operators::LaunchSameDimsElementwiseCudaKernel(dev_ctx, ins, &outs, functor); } else { std::vector ins = {&grad_y, &mask}; std::vector outs = {grad_x}; if (dropout_implementation == "upscale_in_train") { if (dropout_prob == 1.0f) { #ifdef PADDLE_WITH_HIP hipMemset(grad_x->data(), 0, size * sizeof(T)); #else cudaMemset(grad_x->data(), 0, size * sizeof(T)); #endif } else { factor = static_cast(1.0f / (1.0f - dropout_prob)); paddle::operators::LaunchSameDimsElementwiseCudaKernel( dev_ctx, ins, &outs, CudaDropoutGradFunctor(factor)); } } else { factor = static_cast(1.0f); paddle::operators::LaunchSameDimsElementwiseCudaKernel( dev_ctx, ins, &outs, CudaDropoutGradFunctor(factor)); } } } } // namespace operators } // namespace paddle