/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ // disable numpy compile error #include "paddle/fluid/pybind/eager.h" #include // Avoid a problem with copysign defined in pyconfig.h on Windows. #ifdef copysign #undef copysign #endif #include #include #include "paddle/fluid/eager/accumulation/accumulation_node.h" #include "paddle/fluid/eager/api/all.h" #include "paddle/fluid/eager/autograd_meta.h" #include "paddle/fluid/eager/utils.h" #include "paddle/fluid/framework/convert_utils.h" #include "paddle/fluid/memory/allocation/allocator.h" #include "paddle/fluid/memory/memcpy.h" #include "paddle/fluid/platform/enforce.h" #include "paddle/fluid/pybind/eager_utils.h" #include "paddle/phi/common/data_type.h" #include "paddle/phi/core/compat/convert_utils.h" #include "paddle/phi/core/dense_tensor.h" #include "pybind11/detail/internals.h" #include "pybind11/numpy.h" #include "pybind11/pybind11.h" #pragma GCC diagnostic ignored "-Wmissing-field-initializers" #include "paddle/fluid/framework/phi_utils.h" #include "paddle/fluid/framework/python_headers.h" #include "paddle/fluid/pybind/exception.h" #include "paddle/fluid/pybind/tensor_py.h" #include "paddle/phi/core/string_tensor.h" #ifdef PADDLE_WITH_DISTRIBUTE #include "paddle/phi/core/distributed/auto_parallel/dist_attr.h" #include "paddle/phi/core/distributed/auto_parallel/dist_tensor.h" using phi::distributed::DistTensor; using phi::distributed::auto_parallel::TensorDistAttr; #endif namespace paddle { namespace pybind { namespace py = ::pybind11; extern PyTypeObject* p_tensor_type; extern PyTypeObject* p_string_tensor_type; // For StringTensor extern PyTypeObject* g_vartype_pytype; extern PyTypeObject* g_framework_tensor_pytype; PyObject* TensorNew(PyTypeObject* type, PyObject* args, PyObject* kwargs) { PyObject* obj = type->tp_alloc(type, 0); if (obj) { auto v = reinterpret_cast(obj); new (&(v->tensor)) paddle::Tensor(); } return obj; } #ifdef PADDLE_WITH_DISTRIBUTE void EmptyDistTensorInitializer( TensorObject* self, const std::string& name, const paddle::platform::Place& place, const std::shared_ptr& dist_attr, bool persistable = false, int stop_gradient = -1, framework::proto::VarType::Type dtype = paddle::framework::proto::VarType::FP32, const std::vector& dims = {0}) { auto ddims = phi::make_ddim(dims); self->tensor.set_name(name); auto autograd_meta = egr::EagerUtils::autograd_meta(&(self->tensor)); autograd_meta->SetPersistable(persistable); if (stop_gradient != -1) { autograd_meta->SetStopGradient(static_cast(stop_gradient)); } std::shared_ptr dist_tensor = nullptr; if (dims.size() == 1 && dims[0] == 0) { std::shared_ptr allocation_ptr = nullptr; dist_tensor = std::make_shared( allocation_ptr, phi::DenseTensorMeta(paddle::framework::TransToPhiDataType(dtype), ddims), dist_attr); } else { dist_tensor = std::make_shared( std::make_shared(), phi::DenseTensorMeta(paddle::framework::TransToPhiDataType(dtype), ddims), dist_attr); } self->tensor.set_impl(dist_tensor); if (!autograd_meta->GetMutableGradNode()) { autograd_meta->SetGradNode( std::make_shared(autograd_meta)); VLOG(3) << "Tensor(" << name << ") have not GradNode, add GradNodeAccumulation" << autograd_meta->GradNode() << " for it."; } } #endif // TODO(jiabin): Overload this once we need more constructor in Python void EmptyTensorInitializer(TensorObject* self, const std::string& name, const paddle::platform::Place& place, bool persistable = false, int stop_gradient = -1, framework::proto::VarType::Type dtype = paddle::framework::proto::VarType::FP32, const std::vector& dims = {0}, framework::proto::VarType::Type var_type = paddle::framework::proto::VarType::LOD_TENSOR) { auto ddims = phi::make_ddim(dims); self->tensor.set_name(name); auto autograd_meta = egr::EagerUtils::autograd_meta(&(self->tensor)); autograd_meta->SetPersistable(persistable); if (stop_gradient != -1) { autograd_meta->SetStopGradient(static_cast(stop_gradient)); } if (var_type == paddle::framework::proto::VarType::LOD_TENSOR) { // TODO(jiabin): Maybe support LOD later std::shared_ptr dense_tensor = nullptr; if (dims.size() == 1 && dims[0] == 0) { std::shared_ptr allocation_ptr = nullptr; dense_tensor = std::make_shared( allocation_ptr, phi::DenseTensorMeta(paddle::framework::TransToPhiDataType(dtype), ddims)); } else { // TODO(dev): we need enhance check for ddims. dense_tensor = std::make_shared( std::make_shared(), phi::DenseTensorMeta(paddle::framework::TransToPhiDataType(dtype), ddims)); } self->tensor.set_impl(dense_tensor); } else if (var_type == paddle::framework::proto::VarType::SELECTED_ROWS) { std::shared_ptr tensor = std::make_shared(); self->tensor.set_impl(tensor); } if (!autograd_meta->GetMutableGradNode()) { autograd_meta->SetGradNode( std::make_shared(autograd_meta)); VLOG(3) << "Tensor(" << name << ") have not GradNode, add GradNodeAccumulation" << autograd_meta->GradNode() << " for it."; } } void EmptyStringTensorInitializer(TensorObject* self, const std::string& name, const paddle::platform::Place& place, const std::vector& dims = {}) { auto ddims = phi::make_ddim(dims); self->tensor.set_name(name); // Note(zhoushunjie): Only support CPUPlace when create StringTensor auto actual_place = platform::CPUPlace(); // Allocate memory paddle::experimental::DefaultAllocator string_allocator(actual_place); std::shared_ptr string_tensor = std::make_shared(&string_allocator, phi::StringTensorMeta{ddims}); if (phi::product(ddims) > 0) { string_tensor->mutable_data(actual_place); } self->tensor.set_impl(string_tensor); } #ifdef PADDLE_WITH_DISTRIBUTE void InitDistTensorWithNumpyValue(TensorObject* self, const py::object& array, const paddle::platform::Place& place, bool zero_copy = false) { PADDLE_ENFORCE_EQ( self->tensor.defined(), true, paddle::platform::errors::Unavailable( "Calling InitDistTensorWithNumpyValue of Eager Tensor without " "EmptyDistTensorInitializer is " "forbidden. Please check your code and make sure you new a " "eager tensor before init it with NumPy.")); DistTensor* dist_tensor_ptr = static_cast(self->tensor.impl().get()); phi::DenseTensor* impl_ptr = static_cast(dist_tensor_ptr->mutable_value()); if (platform::is_cpu_place(place)) { SetTensorFromPyArray(impl_ptr, array, place, zero_copy); } else if (platform::is_xpu_place(place)) { SetTensorFromPyArray(impl_ptr, array, place, zero_copy); } else if (platform::is_gpu_place(place)) { SetTensorFromPyArray( impl_ptr, array, place, zero_copy); } else if (platform::is_cuda_pinned_place(place)) { SetTensorFromPyArray( impl_ptr, array, place, zero_copy); } else if (platform::is_custom_place(place)) { SetTensorFromPyArray( impl_ptr, array, place, zero_copy); } else { PADDLE_THROW(platform::errors::InvalidArgument( "Place should be one of " "CPUPlace/XPUPlace/CUDAPlace/CUDAPinnedPlace/CustomPlace")); } // TODO(dev): dist_tensor meta is not equal to dense tensor meta dist_tensor_ptr->set_meta(impl_ptr->meta()); } #endif void InitTensorWithNumpyValue(TensorObject* self, const py::object& array, const paddle::platform::Place& place, bool zero_copy = false) { PADDLE_ENFORCE_EQ( self->tensor.defined(), true, paddle::platform::errors::Unavailable( "Calling InitTensorWithNumpyValue of Eager Tensor without " "EmptyTensorInitializer is " "forbidden. Please check your code and make sure you new a " "eager tensor before init it with NumPy.")); phi::DenseTensor* impl_ptr = static_cast(self->tensor.impl().get()); if (platform::is_cpu_place(place)) { SetTensorFromPyArray(impl_ptr, array, place, zero_copy); } else if (platform::is_xpu_place(place)) { SetTensorFromPyArray(impl_ptr, array, place, zero_copy); } else if (platform::is_gpu_place(place)) { SetTensorFromPyArray( impl_ptr, array, place, zero_copy); } else if (platform::is_cuda_pinned_place(place)) { SetTensorFromPyArray( impl_ptr, array, place, zero_copy); } else if (platform::is_custom_place(place)) { SetTensorFromPyArray( impl_ptr, array, place, zero_copy); } else { PADDLE_THROW(platform::errors::InvalidArgument( "Place should be one of " "CPUPlace/XPUPlace/CUDAPlace/CUDAPinnedPlace/CustomPlace")); } } void InitStringTensorWithNumpyValue(TensorObject* self, const py::object& obj) { PADDLE_ENFORCE_EQ( self->tensor.defined(), true, paddle::platform::errors::Fatal( "Calling InitStringTensorWithNumpyValue of Eager StringTensor " "without " "EmptyStringTensorInitializer is " "forbidden. Please check your code and make sure you new a " "eager tensor before init it with NumPy.")); phi::StringTensor* impl_ptr = static_cast(self->tensor.impl().get()); paddle::platform::Place place = impl_ptr->place(); auto array = obj.cast(); if (platform::is_cpu_place(place)) { SetStringTensorFromPyArray(impl_ptr, array, place); } else { PADDLE_THROW(platform::errors::InvalidArgument( "StringTensor only support CPUPlace now, but receive %s", place.DebugString())); } } #ifdef PADDLE_WITH_DISTRIBUTE void InitDistTensorWithTensor( TensorObject* self, const paddle::Tensor& src, const paddle::platform::Place& place, const std::string& name, const std::shared_ptr& dist_attr) { PADDLE_ENFORCE(src.is_dense_tensor(), paddle::platform::errors::InvalidArgument( "DistTensor can only initialize by DenseTensor")); self->tensor.set_name(name); if (place == src.place()) { std::shared_ptr tensor = std::static_pointer_cast(src.impl()); self->tensor.set_impl( std::make_shared(tensor, tensor->meta(), dist_attr)); VLOG(4) << "Same place, do ShareDataWith for DistTensor."; } else { std::shared_ptr tensor = std::static_pointer_cast( src.copy_to(place, true).impl()); self->tensor.set_impl( std::make_shared(tensor, tensor->meta(), dist_attr)); VLOG(4) << "Different place, do TensorCopy for DistTensor."; } if (src.get_autograd_meta()) { egr::EagerUtils::autograd_meta(&(self->tensor)) ->SetPersistable( egr::EagerUtils::unsafe_autograd_meta(src)->Persistable()); } else { egr::EagerUtils::autograd_meta(&(self->tensor))->SetPersistable(false); } } #endif void InitTensorWithTensor(TensorObject* self, const paddle::Tensor& src, const paddle::platform::Place& place, const std::string& name) { self->tensor.set_name(name); if (place == src.place()) { self->tensor.set_impl(src.impl()); VLOG(4) << "Same place, do ShareDataWith"; } else { self->tensor.set_impl(src.copy_to(place, true).impl()); VLOG(4) << "Different place, do TensorCopy"; } if (src.get_autograd_meta()) { egr::EagerUtils::autograd_meta(&(self->tensor)) ->SetPersistable( egr::EagerUtils::unsafe_autograd_meta(src)->Persistable()); } else { egr::EagerUtils::autograd_meta(&(self->tensor))->SetPersistable(false); } } void InitTensorWithFrameworkTensor(TensorObject* self, const phi::DenseTensor& src, const paddle::platform::Place& place, const std::string& name) { self->tensor.set_name(name); if (place == src.place()) { self->tensor.set_impl(std::make_shared(src)); VLOG(4) << "Same place, do ShareDataWith"; } else { auto temp = paddle::Tensor(std::make_shared(src)); self->tensor.set_impl(temp.copy_to(place, true).impl()); VLOG(4) << "Different place, do TensorCopy"; } egr::EagerUtils::autograd_meta(&(self->tensor))->SetPersistable(false); } void InitStringTensorWithStringTensor(TensorObject* self, const paddle::Tensor& src, const paddle::platform::Place& place, const std::string& name) { self->tensor.set_name(name); auto impl = std::static_pointer_cast(src.impl()); self->tensor.set_impl(impl); VLOG(4) << "Do ShareDataWith when using StringTensor to initialize StringTensor"; } py::object ParsePyArray( std::unordered_map kws_map, std::unordered_map kw_order_map, PyObject* args, bool flag_kwargs, Py_ssize_t args_num) { py::object numpy_value = py::object(); if (kw_order_map["value"] <= args_num) { numpy_value = py::object( py::handle(PyTuple_GET_ITEM(args, kw_order_map["value"] - 1)), true); } else { if (flag_kwargs && kws_map["value"] != nullptr) { numpy_value = py::object(py::handle(kws_map["value"]), true); } else { PADDLE_THROW(platform::errors::InvalidArgument( "The first expected arguments is {value: PyArray}, " "but could not parse the first argument {value: PyArray} " "successfully. " "Please check your input first and make sure you are on the right " "way.")); } } return numpy_value; } paddle::platform::Place ParsePlace( std::unordered_map kws_map, std::unordered_map kw_order_map, PyObject* args, bool flag_kwargs, Py_ssize_t args_num) { paddle::platform::Place place = egr::Controller::Instance().GetExpectedPlace(); if (kw_order_map["place"] <= args_num) { place = CastPyArg2Place(PyTuple_GET_ITEM(args, kw_order_map["place"] - 1), kw_order_map["place"] - 1); } else { if (flag_kwargs && kws_map["place"] != nullptr) { place = CastPyArg2Place(kws_map["place"], 0); } else { // default return place; } } return place; } #ifdef PADDLE_WITH_DISTRIBUTE std::shared_ptr ParseDistAttrArgs( std::unordered_map kws_map, std::unordered_map kw_order_map, PyObject* args, bool flag_kwargs, Py_ssize_t args_num) { std::shared_ptr dist_attr = nullptr; if (kw_order_map["dist_attr"] <= args_num) { dist_attr = CastPyArg2DistAttr( PyTuple_GET_ITEM(args, kw_order_map["dist_attr"] - 1), kw_order_map["dist_attr"] - 1); } else if (flag_kwargs && kws_map["dist_attr"] != nullptr) { dist_attr = CastPyArg2DistAttr(kws_map["dist_attr"], 0); } return dist_attr; } #endif // boolean arguments: zero_copy, stop_gradient, persistable int ParseBooleanArgs(std::string key, std::unordered_map kws_map, std::unordered_map kw_order_map, PyObject* args, bool flag_kwargs, Py_ssize_t args_num) { int res = -1; if (kw_order_map[key] <= args_num) { res = static_cast(CastPyArg2AttrBoolean( PyTuple_GET_ITEM(args, kw_order_map[key] - 1), kw_order_map[key] - 1)); } else { if (flag_kwargs && kws_map[key] != nullptr) { res = static_cast(CastPyArg2AttrBoolean(kws_map[key], 0)); } } return res; } std::string ParseName(std::unordered_map kws_map, std::unordered_map kw_order_map, PyObject* args, bool flag_kwargs, Py_ssize_t args_num, std::string unique_name_prefix = "generated_tensor") { std::string act_name = ""; if (kw_order_map["name"] <= args_num) { PyObject* name_obj = PyTuple_GET_ITEM(args, kw_order_map["name"] - 1); if (name_obj == Py_None) { act_name = egr::Controller::Instance().GenerateUniqueName(unique_name_prefix); } else { act_name = CastPyArg2AttrString(name_obj, kw_order_map["name"] - 1); } } else { if (flag_kwargs) { if ((kws_map["name"] == nullptr) || (kws_map["name"] == Py_None)) { act_name = egr::Controller::Instance().GenerateUniqueName(unique_name_prefix); } else { act_name = CastPyArg2AttrString(kws_map["name"], 0); } } else { act_name = egr::Controller::Instance().GenerateUniqueName(unique_name_prefix); } } return act_name; } // initialize Tensor by PyArray(first argument is PyArray, // mix args and kwargs) automatically. void AutoInitTensorByPyArray(TensorObject* py_tensor_ptr, std::unordered_map kws_map, PyObject* args, bool flag_kwargs, Py_ssize_t args_num) { // The first argument of the Tensor constructor is PyArray, // there are 6 arguments to construct the new Tensor, // kw_order_map's key is every arguments of the constructor, // kw_order_map's value is the position of the arguments respectively. // If u want to update this constructor with new arguments, // need to update this map and to add or change related code. std::unordered_map kw_order_map{{"value", 1}, {"place", 2}, {"persistable", 3}, {"zero_copy", 4}, {"name", 5}, {"stop_gradient", 6}, {"dist_attr", 7}}; py::object numpy_value = py::object(); paddle::platform::Place place = egr::Controller::Instance().GetExpectedPlace(); bool persistable = false; bool zero_copy = false; std::string act_name = ""; int stop_gradient = -1; numpy_value = ParsePyArray(kws_map, kw_order_map, args, flag_kwargs, args_num); place = ParsePlace(kws_map, kw_order_map, args, flag_kwargs, args_num); persistable = (1 == ParseBooleanArgs( "persistable", kws_map, kw_order_map, args, flag_kwargs, args_num)); zero_copy = (1 == ParseBooleanArgs( "zero_copy", kws_map, kw_order_map, args, flag_kwargs, args_num)); act_name = ParseName(kws_map, kw_order_map, args, flag_kwargs, args_num); stop_gradient = ParseBooleanArgs( "stop_gradient", kws_map, kw_order_map, args, flag_kwargs, args_num); #ifdef PADDLE_WITH_DISTRIBUTE std::shared_ptr dist_attr = ParseDistAttrArgs(kws_map, kw_order_map, args, flag_kwargs, args_num); if (dist_attr) { EmptyDistTensorInitializer( py_tensor_ptr, act_name, place, dist_attr, persistable, stop_gradient); InitDistTensorWithNumpyValue(py_tensor_ptr, numpy_value, place, zero_copy); return; } #endif EmptyTensorInitializer( py_tensor_ptr, act_name, place, persistable, stop_gradient); InitTensorWithNumpyValue(py_tensor_ptr, numpy_value, place, zero_copy); } // initialize Tensor by Tensor or phi::DenseTensor (mix args and // kwargs) automatically. void AutoInitTensorByTensor(TensorObject* py_tensor_ptr, std::unordered_map kws_map, PyObject* args, bool flag_kwargs, Py_ssize_t args_num, bool init_by_egr_tensor = true) { // The first argument of the Tensor constructor is Tensor or // framework Tensor, // there are 3 arguments to construct the new Tensor, // kw_order_map's key is every arguments of the constructor, // kw_order_map's value is the position of the arguments respectively. // If u want to update this constructor with new arguments, // need to update this map and to add or change related code. std::unordered_map kw_order_map{ {"value", 1}, {"place", 2}, {"name", 3}, {"dist_attr", 4}}; paddle::platform::Place place = egr::Controller::Instance().GetExpectedPlace(); std::string act_name = ""; place = ParsePlace(kws_map, kw_order_map, args, flag_kwargs, args_num); act_name = ParseName(kws_map, kw_order_map, args, flag_kwargs, args_num); #ifdef PADDLE_WITH_DISTRIBUTE std::shared_ptr dist_attr = ParseDistAttrArgs(kws_map, kw_order_map, args, flag_kwargs, args_num); #endif if (init_by_egr_tensor) { paddle::Tensor src_tensor; if (kw_order_map["value"] <= args_num) { src_tensor = CastPyArg2Tensor(PyTuple_GET_ITEM(args, kw_order_map["value"] - 1), kw_order_map["value"] - 1); } else { if (flag_kwargs && kws_map["value"] != nullptr) { src_tensor = CastPyArg2Tensor(kws_map["value"], 0); } else { PADDLE_THROW(platform::errors::InvalidArgument( "The first expected kwargs is {value: Tensor}, " "but could not parse the first argument {value: Tensor} " "successfully. " "Please check your input first and make sure you are on the right " "way.")); } } #ifdef PADDLE_WITH_DISTRIBUTE if (dist_attr) { InitDistTensorWithTensor( py_tensor_ptr, src_tensor, place, act_name, dist_attr); } else { InitTensorWithTensor(py_tensor_ptr, src_tensor, place, act_name); } #else InitTensorWithTensor(py_tensor_ptr, src_tensor, place, act_name); #endif } else { // init by framework tensor phi::DenseTensor src_tensor; if (kw_order_map["value"] <= args_num) { src_tensor = CastPyArg2FrameworkTensor( PyTuple_GET_ITEM(args, kw_order_map["value"] - 1), kw_order_map["value"] - 1); } else { if (flag_kwargs && kws_map["value"] != nullptr) { src_tensor = CastPyArg2FrameworkTensor(kws_map["value"], 0); } else { PADDLE_THROW(platform::errors::InvalidArgument( "The first expected arguments is {value: phi::DenseTensor}, " "but could not parse the first argument {value: phi::DenseTensor} " "successfully. " "Please check your input first and make sure you are on the right " "way.")); } } InitTensorWithFrameworkTensor(py_tensor_ptr, src_tensor, place, act_name); } } void AutoInitStringTensorByPyArray( TensorObject* py_tensor_ptr, std::unordered_map kws_map, PyObject* args, bool flag_kwargs, Py_ssize_t args_num) { // The first argument of the StringTensor constructor is PyArray, // there are 4 arguments to construct the new StringTensor, // kw_order_map's key is every arguments of the constructor, // kw_order_map's value is the position of the arguments respectively. // If u want to update this constructor with new arguments, // need to update this map and to add or change related code. std::unordered_map kw_order_map{{"value", 1}, {"name", 2}}; py::object numpy_value = py::object(); paddle::platform::Place place = egr::Controller::Instance().GetExpectedPlace(); std::string act_name = ""; numpy_value = ParsePyArray(kws_map, kw_order_map, args, flag_kwargs, args_num); act_name = ParseName(kws_map, kw_order_map, args, flag_kwargs, args_num, "generated_string_tensor"); EmptyStringTensorInitializer(py_tensor_ptr, act_name, place); InitStringTensorWithNumpyValue(py_tensor_ptr, numpy_value); } void AutoInitStringTensorByStringTensor( TensorObject* py_tensor_ptr, std::unordered_map kws_map, PyObject* args, bool flag_kwargs, Py_ssize_t args_num) { // The first argument of the Tensor constructor is StringTensor, // there are 3 arguments to construct the new StringTensor, // kw_order_map's key is every arguments of the constructor, // kw_order_map's value is the position of the arguments respectively. // If u want to update this constructor with new arguments, // need to update this map and to add or change related code. std::unordered_map kw_order_map{{"value", 1}, {"name", 2}}; paddle::platform::Place place = egr::Controller::Instance().GetExpectedPlace(); std::string act_name = ""; act_name = ParseName(kws_map, kw_order_map, args, flag_kwargs, args_num, "generated_string_tensor"); paddle::Tensor src_tensor; if (kw_order_map["value"] <= args_num) { src_tensor = CastPyArg2Tensor(PyTuple_GET_ITEM(args, kw_order_map["value"] - 1), kw_order_map["value"] - 1); } else { if (flag_kwargs && kws_map["value"] != nullptr) { src_tensor = CastPyArg2Tensor(kws_map["value"], 0); } else { PADDLE_THROW(platform::errors::InvalidArgument( "The first expected kwargs is {value: Tensor}, " "but could not parse the first argument {value: Tensor} " "successfully. " "Please check your input first and make sure you are on the right " "way.")); } } InitStringTensorWithStringTensor(py_tensor_ptr, src_tensor, place, act_name); } PyDoc_STRVAR( // NOLINT TensorDoc, R"DOC(Tensor($self, /, value, place, persistable, zero_copy, name, stop_gradient, dims, dtype, type) -- Tensor is the basic data structure in PaddlePaddle. There are some ways to create a Tensor: - Use the exsiting ``data`` to create a Tensor, please refer to :ref:`api_paddle_to_tensor`. - Create a Tensor with a specified ``shape``, please refer to :ref:`api_paddle_ones`, :ref:`api_paddle_zeros`, :ref:`api_paddle_full`. - Create a Tensor with the same ``shape`` and ``dtype`` as other Tensor, please refer to :ref:`api_paddle_ones_like`, :ref:`api_paddle_zeros_like`, :ref:`api_paddle_full_like`. )DOC"); /** We should have init function with signature: * 1. * def __init__ () * 2. * def __init__ ( * ** dtype: paddle::framework::proto::VarType::Type, * ** dims: vector, * ** name: std::string, * ** type: paddle::framework::proto::VarType::LodTensor, * ** persistable: bool) * 3. (multi-place) * (should have at least one parameter, one parameter equals to case 4, zero * parameter equals to case 1) * def __init__ ( * ** value: ndarray, * ** place: paddle::platform::Place, * ** persistable: bool, * ** zero_copy: bool, * ** name: std::string, * ** stop_gradient: bool, * ** dist_attr: phi::distributed::auto_parallel::TensorDistAttr) * 4. * def __init__ ( * ** value: ndarray) * 5. * def __init__ ( * ** tensor: Tensor) * 6. (multi-place) * (should have at least one parameter, one parameter equals to case 5, zero * parameter equals to case 1.) * def __init__ ( * ** tensor: Tensor, * ** place: paddle::platform::Place, * ** name: std::string, * ** dist_attr: phi::distributed::auto_parallel::TensorDistAttr) * 7. (multi-place) (should have at least one parameter, one parameter similar * to case 5, zero parameter equals to case 1.) * def __init__ ( * ** tensor: FrameworkTensor, * ** place: paddle::platform::Place, * ** name: std::string) * **/ int TensorInit(PyObject* self, PyObject* args, PyObject* kwargs) { EAGER_TRY // set a flag to record use kwargs or not bool flag_kwargs = false; if (kwargs) flag_kwargs = true; // all kwargs PyObject* kw_zero_copy = nullptr; PyObject* kw_persistable = nullptr; PyObject* kw_stop_gradient = nullptr; PyObject* kw_value = nullptr; // receive PyArray or Tensor PyObject* kw_place = nullptr; PyObject* kw_name = nullptr; PyObject* kw_dims = nullptr; PyObject* kw_dtype = nullptr; PyObject* kw_type = nullptr; PyObject* kw_dist_attr = nullptr; // the keywords argument static char* kwlist[] = {const_cast("value"), // NOLINT const_cast("place"), const_cast("persistable"), const_cast("zero_copy"), const_cast("name"), const_cast("stop_gradient"), const_cast("dims"), const_cast("dtype"), const_cast("type"), const_cast("dist_attr"), nullptr}; // 'O' Store a Python object (without any conversion) in a C object pointer, // '|' Indicates that the remaining arguments in the Python argument list are // optional. // PyArg_ParseTupleAndKeywords can Parse the parameters of a function that // takes both positional and keyword parameters into local variables, // which enhance case2, case3, case4, case5, case6, case7. bool flag_ = PyArg_ParseTupleAndKeywords(args, kwargs, "|OOOOOOOOOO", kwlist, &kw_value, &kw_place, &kw_persistable, &kw_zero_copy, &kw_name, &kw_stop_gradient, &kw_dims, &kw_dtype, &kw_type, &kw_dist_attr); // helper map std::unordered_map kws_map{ {"value", kw_value}, {"place", kw_place}, {"persistable", kw_persistable}, {"zero_copy", kw_zero_copy}, {"name", kw_name}, {"stop_gradient", kw_stop_gradient}, {"dims", kw_dims}, {"dtype", kw_dtype}, {"type", kw_type}, {"dist_attr", kw_dist_attr}}; PADDLE_ENFORCE_EQ(flag_, true, paddle::platform::errors::PreconditionNotMet( "Could not parse args and kwargs successfully, " "please check your input first and make" "sure you are on the right way. " "The expected arguments as follow: (" "value, place, persistable, zero_copy, " "name, stop_gradient, dims, dtype, type, dist_attr)")); PADDLE_ENFORCE_NOT_NULL( self, paddle::platform::errors::Fatal( "Calling __init__ of Eager Tensor without __new__ is " "forbidden. Please check your code and make sure you new a " "eager tensor before init it.")); auto py_tensor_ptr = reinterpret_cast(self); Py_ssize_t args_num = PyTuple_Size(args); VLOG(6) << " args_num: " << args_num; // args_num = 0, means that there is no position arguments. if (args_num == (Py_ssize_t)0) { if (!flag_kwargs) { // case 1 VLOG(6) << "Calling case1's initializer."; EmptyTensorInitializer( py_tensor_ptr, egr::Controller::Instance().GenerateUniqueName("generated_tensor"), egr::Controller::Instance().GetExpectedPlace()); return 0; } else { // no position args, all arguments are kwargs if (kw_value != nullptr) { if (pybind11::detail::npy_api::get().PyArray_Check_(kw_value)) { VLOG(6) << "Calling case3's or case4's initializer"; AutoInitTensorByPyArray( py_tensor_ptr, kws_map, args, flag_kwargs, args_num); return 0; } else if (PyObject_TypeCheck(kw_value, p_tensor_type)) { VLOG(6) << "Calling case5's or case6's initializer"; AutoInitTensorByTensor( py_tensor_ptr, kws_map, args, flag_kwargs, args_num); return 0; } else if (PyObject_TypeCheck(kw_value, g_framework_tensor_pytype)) { VLOG(6) << "Calling case7's initializer."; AutoInitTensorByTensor(py_tensor_ptr, kws_map, args, flag_kwargs, args_num, /* false means not init by egr tensor*/ false); return 0; } else { PADDLE_THROW(platform::errors::InvalidArgument( "Could not parse the first keyword argument successfully, " "the first keyword argument is value, but it should be PyArray " "or Tensor or phi::DenseTensor. " "Please check your input first and make sure you are on the " "right way.")); } } else if (kw_dtype != nullptr && PyObject_TypeCheck(kw_dtype, g_vartype_pytype)) { VLOG(6) << "Calling case2's initializer"; PADDLE_ENFORCE_NOT_NULL( kw_dims, paddle::platform::errors::InvalidArgument( "Calling __init__ of Eager Tensor with NULL dims is " "forbidden. Please check your code and make sure you new a " "dims before calling this constructor.")); PADDLE_ENFORCE_NOT_NULL( kw_name, paddle::platform::errors::InvalidArgument( "Calling __init__ of Eager Tensor with NULL name is " "forbidden. Please check your code and make sure you new a " "name before calling this constructor.")); PADDLE_ENFORCE_NOT_NULL( kw_dtype, paddle::platform::errors::InvalidArgument( "Calling __init__ of Eager Tensor with NULL dtype is " "forbidden. Please check your code and make sure you new a " "dtype before calling this constructor.")); PADDLE_ENFORCE_NOT_NULL( kw_persistable, paddle::platform::errors::InvalidArgument( "Calling __init__ of Eager Tensor with NULL persistable is " "forbidden. Please check your code and make sure you new a " "persistable before calling this constructor.")); paddle::framework::proto::VarType::Type dtype = CastPyArg2ProtoType(kw_dtype, 0); std::vector dims = CastPyArg2VectorOfInt(kw_dims, 0); std::string act_name = ""; if (kw_name == Py_None) { act_name = egr::Controller::Instance().GenerateUniqueName( "generated_tensor"); } else { act_name = CastPyArg2AttrString(kw_name, 0); } paddle::framework::proto::VarType::Type var_type = CastPyArg2ProtoType(kw_type, 0); bool persistable = CastPyArg2AttrBoolean(kw_persistable, 0); EmptyTensorInitializer(py_tensor_ptr, act_name, egr::Controller::Instance().GetExpectedPlace(), persistable, /* stop_gradient */ -1, dtype, dims, var_type); return 0; } else { PADDLE_THROW(platform::errors::InvalidArgument( "We not only support construct Tensor from numpy value " "or tensor(Tensor or phi::DenseTensor) " "with python kwargs by this initializer, " "but also even support dtype to init a empty Tensor. " "Please check your input first and make sure you call the existed " "constructor.")); } } } else if (args_num == (Py_ssize_t)1 || args_num == (Py_ssize_t)2 || args_num == (Py_ssize_t)3) { // 1 to 3 position args, remaining arguments are kwargs PyObject* arg0_ptr = PyTuple_GET_ITEM(args, 0); if (pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr)) { VLOG(6) << "Calling case3's or case4's initializer."; AutoInitTensorByPyArray( py_tensor_ptr, kws_map, args, flag_kwargs, args_num); return 0; } else if (PyObject_TypeCheck(arg0_ptr, p_tensor_type)) { VLOG(6) << "Calling case5's or case6's initializer."; AutoInitTensorByTensor( py_tensor_ptr, kws_map, args, flag_kwargs, args_num); return 0; } else if (PyObject_TypeCheck(arg0_ptr, g_framework_tensor_pytype)) { VLOG(6) << "Calling case7's initializer."; AutoInitTensorByTensor(py_tensor_ptr, kws_map, args, flag_kwargs, args_num, /* false means not init by egr tensor*/ false); return 0; } else { PADDLE_THROW(platform::errors::InvalidArgument( "We support construct Tensor from numpy value " "or tensor(Tensor or phi::DenseTensor) " "with python args and kwargs by this initializer, " "but the first argument should be PyArray or Tensor or " "phi::DenseTensor. " "Please check your input first and make sure you call the existed " "constructor.")); } } else if (args_num == (Py_ssize_t)4) { // 4 position args, remaining arguments are kwargs PyObject* arg0_ptr = PyTuple_GET_ITEM(args, 0); if (pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr)) { VLOG(6) << "Calling case3's or case4's initializer."; AutoInitTensorByPyArray( py_tensor_ptr, kws_map, args, flag_kwargs, args_num); return 0; } else { PADDLE_THROW(platform::errors::InvalidArgument( "Incompatible constructor arguments, " "there are 4 position args and remaining arguments arg kwargs," "but the first position args should be PyArray. " "Please check your code and make sure the first position args is " "PyArray.")); } } else if (args_num == (Py_ssize_t)5) { if (!flag_kwargs) { PyObject* arg0_ptr = PyTuple_GET_ITEM(args, 0); if (PyObject_TypeCheck(arg0_ptr, g_vartype_pytype)) { VLOG(6) << "Calling case2's initializer."; paddle::framework::proto::VarType::Type dtype = CastPyArg2ProtoType(PyTuple_GET_ITEM(args, 0), 0); std::vector dims = CastPyArg2VectorOfInt(PyTuple_GET_ITEM(args, 1), 1); std::string act_name = ""; PyObject* name_obj = PyTuple_GET_ITEM(args, 2); if (name_obj == Py_None) { act_name = egr::Controller::Instance().GenerateUniqueName( "generated_tensor"); } else { act_name = CastPyArg2AttrString(PyTuple_GET_ITEM(args, 2), 2); } paddle::framework::proto::VarType::Type var_type = CastPyArg2ProtoType(PyTuple_GET_ITEM(args, 3), 3); bool persistable = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 4), 4); EmptyTensorInitializer(py_tensor_ptr, act_name, egr::Controller::Instance().GetExpectedPlace(), persistable, -1, dtype, dims, var_type); return 0; } else if (pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr)) { VLOG(6) << "Calling case3's initializer."; AutoInitTensorByPyArray( py_tensor_ptr, kws_map, args, flag_kwargs, args_num); return 0; } else { PADDLE_THROW(platform::errors::InvalidArgument( "Incompatible constructor arguments, " "there are only 5 position args," "but the first position args should be PyArray or dtype. " "Please check your code and make sure you call the existed " "constructor.")); } } else { // five position args, remaining arguments are kwargs PyObject* arg0_ptr = PyTuple_GET_ITEM(args, 0); if (pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr)) { VLOG(6) << "Calling case3's or case4's initializer"; AutoInitTensorByPyArray( py_tensor_ptr, kws_map, args, flag_kwargs, args_num); return 0; } else { PADDLE_THROW(platform::errors::InvalidArgument( "Incompatible constructor arguments, " "there are 5 position args and remaining arguments are kwargs," "but the first position args should be PyArray. " "Please check your code and make sure the first position args is " "PyArray.")); } } } else if (args_num == (Py_ssize_t)6) { if (!flag_kwargs) { // case 3 VLOG(6) << "Calling case3's initializer."; AutoInitTensorByPyArray( py_tensor_ptr, kws_map, args, flag_kwargs, args_num); return 0; } else { // six position args, remaining arguments are kwargs, but this // is not a right way PADDLE_THROW(platform::errors::InvalidArgument( "Incompatible constructor arguments, " "there are 6 position args and the remaining arguments are kwargs. " "Please check your code and make sure the first position args is " "PyArray.")); } } else { PADDLE_THROW(platform::errors::Fatal( "Can't not find expected num of args, please check your call, and " "make sure u call the existed constructor.")); } return -1; EAGER_CATCH_AND_THROW_RETURN_NEG } /** We should have init function with signature: * 1. * def __init__ () * * 2. * def __init__ ( * ** dims: vector, * ** name: std::string) * * 3. * (should have at least one parameter, one parameter equals to case 4, zero * parameter equals to case 1) * def __init__ ( * ** value: ndarray, * ** zero_copy: bool, * ** name: std::string) * * 4. * def __init__ ( * ** value: ndarray) * * 5. * def __init__ ( * ** tensor: Tensor) * * 6. * (should have at least one parameter, one parameter equals to case 5, zero * parameter equals to case 1.) * def __init__ ( * ** tensor: Tensor, * ** name: std::string) * **/ int StringTensorInit(PyObject* self, PyObject* args, PyObject* kwargs) { // set a flag to record use kwargs or not bool flag_kwargs = false; if (kwargs) flag_kwargs = true; // all kwargs PyObject* kw_zero_copy = nullptr; PyObject* kw_value = nullptr; // receive PyArray or Tensor PyObject* kw_name = nullptr; PyObject* kw_dims = nullptr; // the keywords argument static char* kwlist[] = {const_cast("value"), // NOLINT const_cast("zero_copy"), const_cast("name"), const_cast("dims"), nullptr}; // 'O' Store a Python object (without any conversion) in a C object pointer, // '|' Indicates that the remaining arguments in the Python argument list are // optional. // PyArg_ParseTupleAndKeywords can Parse the parameters of a function that // takes both positional and keyword parameters into local variables, // which enhance case1, case2, case3, case4, case 5, case 6. bool flag_ = PyArg_ParseTupleAndKeywords(args, kwargs, "|OOOO", kwlist, &kw_value, &kw_zero_copy, &kw_name, &kw_dims); // helper map std::unordered_map kws_map{ {"value", kw_value}, {"zero_copy", kw_zero_copy}, {"name", kw_name}, {"dims", kw_dims}}; PADDLE_ENFORCE_EQ(flag_, true, paddle::platform::errors::PreconditionNotMet( "Could not parse args and kwargs successfully, " "please check your input first and make" "sure you are on the right way. " "The expected arguments as follow: (" "value, zero_copy, name, dims)")); PADDLE_ENFORCE_NOT_NULL( self, paddle::platform::errors::Fatal( "Calling __init__ of Eager Tensor without __new__ is " "forbidden. Please check your code and make sure you new a " "eager tensor before init it.")); auto py_tensor_ptr = reinterpret_cast(self); Py_ssize_t args_num = PyTuple_Size(args); VLOG(6) << " args_num: " << args_num; // args_num = 0, means that there is no position arguments. if (args_num == (Py_ssize_t)0) { if (!flag_kwargs) { // case 1 VLOG(6) << "Calling case1's string initializer."; EmptyStringTensorInitializer( py_tensor_ptr, egr::Controller::Instance().GenerateUniqueName( "generated_string_tensor"), egr::Controller::Instance().GetExpectedPlace()); return 0; } else { if (kw_value != nullptr) { if (pybind11::detail::npy_api::get().PyArray_Check_(kw_value)) { VLOG(6) << "Calling case3's or case4's string initializer"; AutoInitStringTensorByPyArray( py_tensor_ptr, kws_map, args, flag_kwargs, args_num); return 0; } else if (PyObject_TypeCheck(kw_value, p_string_tensor_type)) { VLOG(6) << "Calling case5's or case6's string initializer"; AutoInitStringTensorByStringTensor( py_tensor_ptr, kws_map, args, flag_kwargs, args_num); return 0; } else { PADDLE_THROW(platform::errors::InvalidArgument( "Could not parse the first keyword argument successfully, " "the first keyword argument is value, but it should be PyArray " "or StringTensor." "Please check your input first and make sure you are on the " "right way.")); } } else if (kw_dims != nullptr) { VLOG(6) << "Calling case2's string initializer."; std::unordered_map kw_order_map{{"dims", 1}, {"name", 2}}; std::vector dims = CastPyArg2VectorOfInt(kw_dims, 0); std::string act_name = ParseName(kws_map, kw_order_map, args, flag_kwargs, args_num, "generated_string_tensor"); EmptyStringTensorInitializer( py_tensor_ptr, act_name, egr::Controller::Instance().GetExpectedPlace(), dims); return 0; } else { PADDLE_THROW(platform::errors::InvalidArgument( "We not only support construct Tensor from numpy value " "or StringTensor with python kwargs by this initializer, " "but also even support dtype to init a empty StringTensor. " "Please check your input first and make sure you call the existed " "constructor.")); } } } else if (args_num == (Py_ssize_t)1) { // case 3 ~ 6 // 1 position args, remaining arguments are kwargs PyObject* arg0_ptr = PyTuple_GET_ITEM(args, 0); if (pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr)) { VLOG(6) << "Calling case3's or case4's string initializer."; AutoInitStringTensorByPyArray( py_tensor_ptr, kws_map, args, flag_kwargs, args_num); return 0; } else if (PyObject_TypeCheck(arg0_ptr, p_string_tensor_type)) { VLOG(6) << "Calling case5's or case6's string initializer."; AutoInitStringTensorByStringTensor( py_tensor_ptr, kws_map, args, flag_kwargs, args_num); return 0; } else { PADDLE_THROW(platform::errors::InvalidArgument( "Could not parse the first keyword argument successfully, " "the first keyword argument is value, but it should be PyArray " "or StringTensor." "Please check your input first and make sure you are on the " "right way.")); } } else if (args_num == (Py_ssize_t)2) { // case 2 // 2 position args if (!flag_kwargs) { PyObject* arg0_ptr = PyTuple_GET_ITEM(args, 0); if (PyObject_TypeCheck(arg0_ptr, p_string_tensor_type)) { VLOG(6) << "Calling case6's string initializer."; AutoInitStringTensorByStringTensor( py_tensor_ptr, kws_map, args, flag_kwargs, args_num); return 0; } else if (pybind11::detail::npy_api::get().PyArray_Check_(arg0_ptr)) { VLOG(6) << "Calling case3's string initializer."; AutoInitStringTensorByPyArray( py_tensor_ptr, kws_map, args, flag_kwargs, args_num); return 0; } else { VLOG(6) << "Calling case2's string initializer."; std::vector dims = CastPyArg2VectorOfInt(arg0_ptr, 0); std::string act_name = ""; PyObject* name_obj = PyTuple_GET_ITEM(args, 1); if (name_obj == Py_None) { act_name = egr::Controller::Instance().GenerateUniqueName( "generated_string_tensor"); } else { act_name = CastPyArg2AttrString(PyTuple_GET_ITEM(args, 1), 1); } EmptyStringTensorInitializer( py_tensor_ptr, act_name, egr::Controller::Instance().GetExpectedPlace(), dims); return 0; } } else { PADDLE_THROW(platform::errors::Fatal( "Can't not find expected num of args, please check your call, and " "make sure u call the existed constructor.")); } } return 1; } void AddPyMethodDefs(std::vector* vector, PyMethodDef* methods) { if (!vector->empty()) { // remove nullptr terminator vector->pop_back(); } while (true) { vector->push_back(*methods); if (!methods->ml_name) { break; } methods++; } } static void TensorDealloc(TensorObject* self) { if (self->weakrefs != nullptr) PyObject_ClearWeakRefs(reinterpret_cast(self)); self->tensor.~Tensor(); Py_TYPE(self)->tp_free(reinterpret_cast(self)); } extern struct PyGetSetDef variable_properties[]; // NOLINT extern struct PyGetSetDef string_tensor_variable_properties[]; // NOLINT extern PyMethodDef variable_methods[]; // NOLINT extern PyMethodDef math_op_patch_methods[]; // NOLINT extern PyMethodDef string_tensor_variable_methods[]; // NOLINT PyNumberMethods number_methods; PySequenceMethods sequence_methods; PyMappingMethods mapping_methods; void BindEager(pybind11::module* module) { auto m = module->def_submodule("eager"); static std::vector methods; AddPyMethodDefs(&methods, variable_methods); AddPyMethodDefs(&methods, math_op_patch_methods); auto heap_type = reinterpret_cast( PyType_Type.tp_alloc(&PyType_Type, 0)); heap_type->ht_name = ToPyObject("Tensor"); heap_type->ht_qualname = ToPyObject("Tensor"); auto type = &heap_type->ht_type; type->tp_name = "Tensor"; type->tp_basicsize = sizeof(TensorObject); type->tp_dealloc = (destructor)TensorDealloc; type->tp_as_number = &number_methods; type->tp_as_sequence = &sequence_methods; type->tp_as_mapping = &mapping_methods; type->tp_methods = methods.data(); type->tp_getset = variable_properties; type->tp_init = TensorInit; type->tp_new = TensorNew; type->tp_doc = TensorDoc; type->tp_weaklistoffset = offsetof(TensorObject, weakrefs); Py_INCREF(&PyBaseObject_Type); type->tp_base = reinterpret_cast(&PyBaseObject_Type); type->tp_flags |= Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HEAPTYPE; #if PY_VERSION_HEX >= 0x03050000 type->tp_as_async = &heap_type->as_async; #endif p_tensor_type = type; if (PyType_Ready(type) < 0) { PADDLE_THROW(platform::errors::Fatal( "Init Paddle error in BindEager(PyType_Ready).")); return; } Py_INCREF(type); if (PyModule_AddObject(m.ptr(), "Tensor", reinterpret_cast(type)) < 0) { Py_DECREF(type); Py_DECREF(m.ptr()); PADDLE_THROW(platform::errors::Fatal( "Init Paddle error in BindEager(PyModule_AddObject).")); return; } BindFunctions(m.ptr()); BindEagerPyLayer(m.ptr()); BindEagerOpFunctions(&m); } void BindEagerStringTensor(pybind11::module* module) { auto m = module->def_submodule("eager"); auto heap_type = reinterpret_cast( PyType_Type.tp_alloc(&PyType_Type, 0)); heap_type->ht_name = ToPyObject("StringTensor"); heap_type->ht_qualname = ToPyObject("StringTensor"); auto type = &heap_type->ht_type; type->tp_name = "StringTensor"; type->tp_basicsize = sizeof(TensorObject); type->tp_dealloc = (destructor)TensorDealloc; type->tp_as_number = &number_methods; type->tp_as_sequence = &sequence_methods; type->tp_as_mapping = &mapping_methods; type->tp_methods = string_tensor_variable_methods; type->tp_getset = string_tensor_variable_properties; type->tp_init = StringTensorInit; type->tp_new = TensorNew; Py_INCREF(&PyBaseObject_Type); type->tp_base = reinterpret_cast(&PyBaseObject_Type); type->tp_flags |= Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HEAPTYPE; #if PY_VERSION_HEX >= 0x03050000 type->tp_as_async = &heap_type->as_async; #endif p_string_tensor_type = type; if (PyType_Ready(type) < 0) { PADDLE_THROW(platform::errors::Fatal( "Init Paddle error in BindEager(PyType_Ready).")); return; } Py_INCREF(type); if (PyModule_AddObject( m.ptr(), "StringTensor", reinterpret_cast(type)) < 0) { Py_DECREF(type); Py_DECREF(m.ptr()); PADDLE_THROW(platform::errors::Fatal( "Init Paddle error in BindEagerStringTensor(PyModule_AddObject).")); return; } } } // namespace pybind } // namespace paddle