# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np from op_test import OpTest import paddle.fluid.core as core import paddle.fluid as fluid from paddle.fluid import compiler, Program, program_guard def stable_softmax(x): """Compute the softmax of vector x in a numerically stable way.""" shiftx = x - np.max(x).clip(-64.) exps = np.exp(shiftx) return exps / np.sum(exps) class TestSoftmaxOp(OpTest): def get_x_shape(self): return [10, 10] def get_axis(self): return -1 def setUp(self): self.op_type = "softmax" self.use_cudnn = False self.use_mkldnn = False self.dtype = np.float32 self.init_kernel_type() self.shape = self.get_x_shape() self.axis = self.get_axis() x = np.random.uniform(0.1, 1, self.shape).astype(self.dtype) out = np.apply_along_axis(stable_softmax, self.axis, x) self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)} self.outputs = {'Out': out} self.attrs = { 'axis': self.axis, 'use_cudnn': self.use_cudnn, 'use_mkldnn': self.use_mkldnn } def init_kernel_type(self): pass def test_check_output(self): if self.use_cudnn: place = core.CUDAPlace(0) self.check_output_with_place(place, atol=1e-5) else: self.check_output() def test_check_grad(self): if self.use_cudnn or self.dtype == np.float16: place = core.CUDAPlace(0) if core.is_float16_supported(place): self.check_grad_with_place( place, ["X"], "Out", max_relative_error=0.01) else: self.check_grad(["X"], "Out", max_relative_error=0.01) class TestSoftmaxOpError(OpTest): def test_errors(self): with program_guard(Program(), Program()): # The input type of softmax_op must be Variable. x1 = fluid.create_lod_tensor( np.array([[-1]]), [[1]], fluid.CPUPlace()) self.assertRaises(TypeError, fluid.layers.softmax, x1) # The input dtype of softmax_op must be float16, float32 or float64. x2 = fluid.layers.data(name='x2', shape=[4], dtype="int32") self.assertRaises(TypeError, fluid.layers.softmax, x2) x3 = fluid.layers.data(name='x3', shape=[4], dtype="float16") fluid.layers.softmax(x3) class TestSoftmaxOp2(TestSoftmaxOp): def get_x_shape(self): return [2, 3, 4, 5] class TestSoftmaxOp3(TestSoftmaxOp): def get_x_shape(self): return [2, 3, 4, 5] def get_axis(self): return 0 class TestSoftmaxOp4(TestSoftmaxOp): def get_x_shape(self): return [2, 3, 4, 5] def get_axis(self): return 1 class TestSoftmaxOp5(TestSoftmaxOp): def get_x_shape(self): return [2, 3, 4, 5] def get_axis(self): return 2 class TestSoftmaxOp6(TestSoftmaxOp): def get_x_shape(self): return [2, 3, 4, 5] def get_axis(self): return 3 @unittest.skipIf(not core.is_compiled_with_cuda(), "core is not compiled with CUDA") class TestSoftmaxCUDNNOp(TestSoftmaxOp): def init_kernel_type(self): self.use_cudnn = True @unittest.skipIf(not core.is_compiled_with_cuda(), "core is not compiled with CUDA") class TestSoftmaxCUDNNOp2(TestSoftmaxCUDNNOp): def get_x_shape(self): return [2, 3, 4, 5] @unittest.skipIf(not core.is_compiled_with_cuda(), "core is not compiled with CUDA") class TestSoftmaxCUDNNOp5(TestSoftmaxCUDNNOp): def get_x_shape(self): return [2, 3, 4, 5] def get_axis(self): return 3 @unittest.skipIf(not core.is_compiled_with_cuda(), "core is not compiled with CUDA") class TestSoftmaxFP16Op(TestSoftmaxOp): def init_kernel_type(self): self.dtype = np.float16 def test_check_output(self): if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) if core.is_float16_supported(place): self.check_output_with_place(place, atol=1e-3) # FIXME: If the x_shape is [10, 10], gradient failed. def test_check_grad(self): pass @unittest.skipIf(not core.is_compiled_with_cuda(), "core is not compiled with CUDA") class TestSoftmaxFP16Op2(TestSoftmaxOp): def init_kernel_type(self): self.dtype = np.float16 def test_check_output(self): if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) if core.is_float16_supported(place): self.check_output_with_place(place, atol=1e-3) def get_x_shape(self): return [2, 3, 4, 5] @unittest.skipIf(not core.is_compiled_with_cuda(), "core is not compiled with CUDA") class TestSoftmaxFP16CUDNNOp(TestSoftmaxOp): def init_kernel_type(self): self.use_cudnn = True self.dtype = np.float16 def test_check_output(self): if core.is_compiled_with_cuda(): place = core.CUDAPlace(0) if core.is_float16_supported(place): self.check_output_with_place(place, atol=1e-3) @unittest.skipIf(not core.is_compiled_with_cuda(), "core is not compiled with CUDA") class TestSoftmaxFP16CUDNNOp2(TestSoftmaxFP16CUDNNOp): def get_x_shape(self): return [2, 3, 4, 5] if __name__ == "__main__": unittest.main()