# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import six import copy import re import setuptools from setuptools.command.easy_install import easy_install from setuptools.command.build_ext import build_ext from distutils.command.build import build from .extension_utils import find_cuda_home, normalize_extension_kwargs, add_compile_flag from .extension_utils import is_cuda_file, prepare_unix_cudaflags, prepare_win_cudaflags from .extension_utils import _import_module_from_library, _write_setup_file, _jit_compile from .extension_utils import check_abi_compatibility, log_v, CustomOpInfo, parse_op_name_from from .extension_utils import use_new_custom_op_load_method, clean_object_if_change_cflags from .extension_utils import bootstrap_context, get_build_directory, add_std_without_repeat from .extension_utils import IS_WINDOWS, OS_NAME, MSVC_COMPILE_FLAGS, MSVC_COMPILE_FLAGS # Note(zhouwei): On windows, it will export function 'PyInit_[name]' by default, # The solution is: 1.User add function PyInit_[name] 2. set not to export # refer to https://stackoverflow.com/questions/34689210/error-exporting-symbol-when-building-python-c-extension-in-windows if IS_WINDOWS and six.PY3: from distutils.command.build_ext import build_ext as _du_build_ext from unittest.mock import Mock _du_build_ext.get_export_symbols = Mock(return_value=None) CUDA_HOME = find_cuda_home() def setup(**attr): """ The interface is used to config the process of compiling customized operators, mainly includes how to complile shared library, automatically generate python API and install it into site-package. It supports using customized operators directly with ``import`` statement. It encapsulates the python built-in ``setuptools.setup`` function and keeps arguments and usage same as the native interface. Meanwhile, it hiddens Paddle inner framework concepts, such as necessary compiling flags, included paths of head files, and linking flags. It also will automatically search and valid local enviromment and versions of ``cc`` and ``nvcc`` , then compiles customized operators supporting CPU or GPU device according to the specified Extension type. Moreover, `ABI compatibility `_ will be checked to ensure that compiler version from ``cc`` on local machine is compatible with pre-installed Paddle whl in python site-packages. For example if Paddle with CUDA 10.1 is built with GCC 8.2, then the version of user's local machine should satisfy GCC >= 8.2. Otherwise, a fatal error will occur because of ABI compatibility. .. note:: 1. Compiler ABI compatibility is forward compatible. On Linux platform, we recommend to use GCC 8.2 as soft linking condidate of ``/usr/bin/cc`` . 2. Using ``which cc`` to ensure location of ``cc`` and using ``cc --version`` to ensure linking GCC version on Linux. 3. Currently we support Linux and Windows platfrom. MacOS is supporting... Compared with Just-In-Time ``load`` interface, it only compiles once by executing ``python setup.py install`` . Then customized operators API will be available everywhere after importing it. A simple example of ``setup.py`` as followed: .. code-block:: text # setup.py # Case 1: Compiling customized operators supporting CPU and GPU devices from paddle.utils.cpp_extension import CUDAExtension, setup setup( name='custom_op', # name of package used by "import" ext_modules=CUDAExtension( sources=['relu_op.cc', 'relu_op.cu', 'tanh_op.cc', 'tanh_op.cu'] # Support for compilation of multiple OPs ) ) # Case 2: Compiling customized operators supporting only CPU device from paddle.utils.cpp_extension import CppExtension, setup setup( name='custom_op', # name of package used by "import" ext_modules=CppExtension( sources=['relu_op.cc', 'tanh_op.cc'] # Support for compilation of multiple OPs ) ) Applying compilation and installation by executing ``python setup.py install`` under source files directory. Then we can use the layer api as followed: .. code-block:: text import paddle from custom_op import relu, tanh x = paddle.randn([4, 10], dtype='float32') relu_out = relu(x) tanh_out = tanh(x) Args: name(str): Specify the name of shared library file and installed python package. ext_modules(Extension): Specify the Extension instance including customized operator source files, compiling flags et.al. If only compile operator supporting CPU device, please use ``CppExtension`` ; If compile operator supporting CPU and GPU devices, please use ``CUDAExtension`` . include_dirs(list[str], optional): Specify the extra include directoies to search head files. The interface will automatically add ``site-package/paddle/include`` . Please add the corresponding directory path if including third-party head files. Default is None. extra_compile_args(list[str] | dict, optional): Specify the extra compiling flags such as ``-O3`` . If set ``list[str]`` , all these flags will be applied for ``cc`` and ``nvcc`` compiler. It support specify flags only applied ``cc`` or ``nvcc`` compiler using dict type with ``{'cxx': [...], 'nvcc': [...]}`` . Default is None. **attr(dict, optional): Specify other arguments same as ``setuptools.setup`` . Returns: None """ cmdclass = attr.get('cmdclass', {}) assert isinstance(cmdclass, dict) # if not specific cmdclass in setup, add it automatically. if 'build_ext' not in cmdclass: cmdclass['build_ext'] = BuildExtension.with_options( no_python_abi_suffix=True) attr['cmdclass'] = cmdclass error_msg = """ Required to specific `name` argument in paddle.utils.cpp_extension.setup. It's used as `import XXX` when you want install and import your custom operators.\n For Example: # setup.py file from paddle.utils.cpp_extension import CUDAExtension, setup setup(name='custom_module', ext_modules=CUDAExtension( sources=['relu_op.cc', 'relu_op.cu']) # After running `python setup.py install` from custom_module import relu """ # name argument is required if 'name' not in attr: raise ValueError(error_msg) assert not attr['name'].endswith('module'), \ "Please don't use 'module' as suffix in `name` argument, " "it will be stripped in setuptools.bdist_egg and cause import error." ext_modules = attr.get('ext_modules', []) if not isinstance(ext_modules, list): ext_modules = [ext_modules] assert len( ext_modules ) == 1, "Required only one Extension, but received {}. If you want to compile multi operators, you can include all necessary source files in one Extension.".format( len(ext_modules)) # replace Extension.name with attr['name] to keep consistant with Package name. for ext_module in ext_modules: ext_module.name = attr['name'] attr['ext_modules'] = ext_modules # Add rename .so hook in easy_install assert 'easy_install' not in cmdclass cmdclass['easy_install'] = EasyInstallCommand # Note(Aurelius84): Add rename build_base directory hook in build command. # To avoid using same build directory that will lead to remove the directory # by mistake while parallelling execute setup.py, for example on CI. assert 'build' not in cmdclass build_base = os.path.join('build', attr['name']) cmdclass['build'] = BuildCommand.with_options(build_base=build_base) # Always set zip_safe=False to make compatible in PY2 and PY3 # See http://peak.telecommunity.com/DevCenter/setuptools#setting-the-zip-safe-flag attr['zip_safe'] = False # switch `write_stub` to inject paddle api in .egg with bootstrap_context(): setuptools.setup(**attr) def CppExtension(sources, *args, **kwargs): """ The interface is used to config source files of customized operators and complies Op Kernel only supporting CPU device. Please use ``CUDAExtension`` if you want to compile Op Kernel that supports both CPU and GPU devices. It furtherly encapsulates python built-in ``setuptools.Extension`` .The arguments and usage are same as the native interface, except for no need to explicitly specify ``name`` . **A simple example:** .. code-block:: text # setup.py # Compiling customized operators supporting only CPU device from paddle.utils.cpp_extension import CppExtension, setup setup( name='custom_op', ext_modules=CppExtension(sources=['relu_op.cc']) ) .. note:: It is mainly used in ``setup`` and the nama of built shared library keeps same as ``name`` argument specified in ``setup`` interface. Args: sources(list[str]): Specify the C++/CUDA source files of customized operators. *args(list[options], optional): Specify other arguments same as ``setuptools.Extension`` . **kwargs(dict[option], optional): Specify other arguments same as ``setuptools.Extension`` . Returns: setuptools.Extension: An instance of ``setuptools.Extension`` """ kwargs = normalize_extension_kwargs(kwargs, use_cuda=False) # Note(Aurelius84): While using `setup` and `jit`, the Extension `name` will # be replaced as `setup.name` to keep consistant with package. Because we allow # users can not specific name in Extension. # See `paddle.utils.cpp_extension.setup` for details. name = kwargs.get('name', None) if name is None: name = _generate_extension_name(sources) return setuptools.Extension(name, sources, *args, **kwargs) def CUDAExtension(sources, *args, **kwargs): """ The interface is used to config source files of customized operators and complies Op Kernel supporting both CPU and GPU devices. Please use ``CppExtension`` if you want to compile Op Kernel that supports only CPU device. It furtherly encapsulates python built-in ``setuptools.Extension`` .The arguments and usage are same as the native interface, except for no need to explicitly specify ``name`` . **A simple example:** .. code-block:: text # setup.py # Compiling customized operators supporting CPU and GPU devices from paddle.utils.cpp_extension import CUDAExtension, setup setup( name='custom_op', ext_modules=CUDAExtension( sources=['relu_op.cc', 'relu_op.cu'] ) ) .. note:: It is mainly used in ``setup`` and the nama of built shared library keeps same as ``name`` argument specified in ``setup`` interface. Args: sources(list[str]): Specify the C++/CUDA source files of customized operators. *args(list[options], optional): Specify other arguments same as ``setuptools.Extension`` . **kwargs(dict[option], optional): Specify other arguments same as ``setuptools.Extension`` . Returns: setuptools.Extension: An instance of setuptools.Extension """ kwargs = normalize_extension_kwargs(kwargs, use_cuda=True) # Note(Aurelius84): While using `setup` and `jit`, the Extension `name` will # be replaced as `setup.name` to keep consistant with package. Because we allow # users can not specific name in Extension. # See `paddle.utils.cpp_extension.setup` for details. name = kwargs.get('name', None) if name is None: name = _generate_extension_name(sources) return setuptools.Extension(name, sources, *args, **kwargs) def _generate_extension_name(sources): """ Generate extension name by source files. """ assert len(sources) > 0, "source files is empty" file_prefix = [] for source in sources: source = os.path.basename(source) filename, _ = os.path.splitext(source) # Use list to generate same order. if filename not in file_prefix: file_prefix.append(filename) return '_'.join(file_prefix) class BuildExtension(build_ext, object): """ Inherited from setuptools.command.build_ext to customize how to apply compilation process with share library. """ @classmethod def with_options(cls, **options): """ Returns a BuildExtension subclass containing use-defined options. """ class cls_with_options(cls): def __init__(self, *args, **kwargs): kwargs.update(options) cls.__init__(self, *args, **kwargs) return cls_with_options def __init__(self, *args, **kwargs): """ Attributes is initialized with following oreder: 1. super(self).__init__() 2. initialize_options(self) 3. the reset of current __init__() 4. finalize_options(self) So, it is recommended to set attribute value in `finalize_options`. """ super(BuildExtension, self).__init__(*args, **kwargs) self.no_python_abi_suffix = kwargs.get("no_python_abi_suffix", True) self.output_dir = kwargs.get("output_dir", None) def initialize_options(self): super(BuildExtension, self).initialize_options() def finalize_options(self): super(BuildExtension, self).finalize_options() # NOTE(Aurelius84): Set location of compiled shared library. # Carefully to modify this because `setup.py build/install` # and `load` interface rely on this attribute. if self.output_dir is not None: self.build_lib = self.output_dir def build_extensions(self): self._check_abi() # Note(Aurelius84): If already compiling source before, we should check whether # cflags have changed and delete the built shared library to re-compile the source # even though source file content keep unchanaged. so_name = self.get_ext_fullpath(self.extensions[0].name) clean_object_if_change_cflags( os.path.abspath(so_name), self.extensions[0]) # Consider .cu, .cu.cc as valid source extensions. self.compiler.src_extensions += ['.cu', '.cu.cc'] # Save the original _compile method for later. if self.compiler.compiler_type == 'msvc': self.compiler._cpp_extensions += ['.cu', '.cuh'] original_compile = self.compiler.compile original_spawn = self.compiler.spawn else: original_compile = self.compiler._compile def unix_custom_single_compiler(obj, src, ext, cc_args, extra_postargs, pp_opts): """ Monkey patch machanism to replace inner compiler to custom complie process on Unix platform. """ # use abspath to ensure no warning and don't remove deecopy because modify params # with dict type is dangerous. src = os.path.abspath(src) cflags = copy.deepcopy(extra_postargs) try: original_compiler = self.compiler.compiler_so # ncvv compile CUDA source if is_cuda_file(src): assert CUDA_HOME is not None nvcc_cmd = os.path.join(CUDA_HOME, 'bin', 'nvcc') self.compiler.set_executable('compiler_so', nvcc_cmd) # {'nvcc': {}, 'cxx: {}} if isinstance(cflags, dict): cflags = cflags['nvcc'] cflags = prepare_unix_cudaflags(cflags) # cxx compile Cpp source elif isinstance(cflags, dict): cflags = cflags['cxx'] add_std_without_repeat( cflags, self.compiler.compiler_type, use_std14=False) original_compile(obj, src, ext, cc_args, cflags, pp_opts) finally: # restore original_compiler self.compiler.compiler_so = original_compiler def win_custom_single_compiler(sources, output_dir=None, macros=None, include_dirs=None, debug=0, extra_preargs=None, extra_postargs=None, depends=None): self.cflags = copy.deepcopy(extra_postargs) extra_postargs = None def win_custom_spawn(cmd): # Using regex to modify compile options compile_options = self.compiler.compile_options for i in range(len(cmd)): if re.search('/MD', cmd[i]) is not None: cmd[i] = '/MT' if re.search('/W[1-4]', cmd[i]) is not None: cmd[i] = '/W0' # Using regex to match src, obj and include files src_regex = re.compile('/T(p|c)(.*)') src_list = [ m.group(2) for m in (src_regex.match(elem) for elem in cmd) if m ] obj_regex = re.compile('/Fo(.*)') obj_list = [ m.group(1) for m in (obj_regex.match(elem) for elem in cmd) if m ] include_regex = re.compile(r'((\-|\/)I.*)') include_list = [ m.group(1) for m in (include_regex.match(elem) for elem in cmd) if m ] assert len(src_list) == 1 and len(obj_list) == 1 src = src_list[0] obj = obj_list[0] if is_cuda_file(src): assert CUDA_HOME is not None nvcc_cmd = os.path.join(CUDA_HOME, 'bin', 'nvcc') if isinstance(self.cflags, dict): cflags = self.cflags['nvcc'] elif isinstance(self.cflags, list): cflags = self.cflags else: cflags = [] cflags = prepare_win_cudaflags(cflags) + ['--use-local-env'] for flag in MSVC_COMPILE_FLAGS: cflags = ['-Xcompiler', flag] + cflags cmd = [nvcc_cmd, '-c', src, '-o', obj ] + include_list + cflags elif isinstance(self.cflags, dict): cflags = MSVC_COMPILE_FLAGS + self.cflags['cxx'] cmd += cflags elif isinstance(self.cflags, list): cflags = MSVC_COMPILE_FLAGS + self.cflags cmd += cflags return original_spawn(cmd) try: self.compiler.spawn = win_custom_spawn return original_compile(sources, output_dir, macros, include_dirs, debug, extra_preargs, extra_postargs, depends) finally: self.compiler.spawn = original_spawn def object_filenames_with_cuda(origina_func, build_directory): """ Decorated the function to add customized naming machanism. Originally, both .cc/.cu will have .o object output that will bring file override problem. Use .cu.o as CUDA object suffix. """ def wrapper(source_filenames, strip_dir=0, output_dir=''): try: objects = origina_func(source_filenames, strip_dir, output_dir) for i, source in enumerate(source_filenames): # modify xx.o -> xx.cu.o/xx.cu.obj if is_cuda_file(source): old_obj = objects[i] if self.compiler.compiler_type == 'msvc': objects[i] = old_obj[:-3] + 'cu.obj' else: objects[i] = old_obj[:-1] + 'cu.o' # if user set build_directory, output objects there. if build_directory is not None: objects = [ os.path.join(build_directory, os.path.basename(obj)) for obj in objects ] # ensure to use abspath objects = [os.path.abspath(obj) for obj in objects] finally: self.compiler.object_filenames = origina_func return objects return wrapper # customized compile process if self.compiler.compiler_type == 'msvc': self.compiler.compile = win_custom_single_compiler else: self.compiler._compile = unix_custom_single_compiler self.compiler.object_filenames = object_filenames_with_cuda( self.compiler.object_filenames, self.build_lib) self._record_op_info() print("Compiling user custom op, it will cost a few seconds.....") build_ext.build_extensions(self) def get_ext_filename(self, fullname): # for example: custommed_extension.cpython-37m-x86_64-linux-gnu.so ext_name = super(BuildExtension, self).get_ext_filename(fullname) if self.no_python_abi_suffix and six.PY3: split_str = '.' name_items = ext_name.split(split_str) assert len( name_items ) > 2, "Expected len(name_items) > 2, but received {}".format( len(name_items)) name_items.pop(-2) # custommed_extension.so ext_name = split_str.join(name_items) return ext_name def _check_abi(self): """ Check ABI Compatibility. """ if hasattr(self.compiler, 'compiler_cxx'): compiler = self.compiler.compiler_cxx[0] elif IS_WINDOWS: compiler = os.environ.get('CXX', 'cl') else: compiler = os.environ.get('CXX', 'c++') check_abi_compatibility(compiler) # Warn user if VC env is activated but `DISTUTILS_USE_SDK` is not set. if IS_WINDOWS and 'VSCMD_ARG_TGT_ARCH' in os.environ and 'DISTUTILS_USE_SDK' not in os.environ: msg = ( 'It seems that the VC environment is activated but DISTUTILS_USE_SDK is not set.' 'This may lead to multiple activations of the VC env.' 'Please set `DISTUTILS_USE_SDK=1` and try again.') raise UserWarning(msg) def _record_op_info(self): """ Record custom op information. """ # parse shared library abs path outputs = self.get_outputs() assert len(outputs) == 1 # multi operators built into same one .so file so_path = os.path.abspath(outputs[0]) so_name = os.path.basename(so_path) for i, extension in enumerate(self.extensions): sources = [os.path.abspath(s) for s in extension.sources] op_names = parse_op_name_from(sources) for op_name in op_names: CustomOpInfo.instance().add(op_name, so_name=so_name, so_path=so_path) class EasyInstallCommand(easy_install, object): """ Extend easy_intall Command to control the behavior of naming shared library file. NOTE(Aurelius84): This is a hook subclass inherited Command used to rename shared library file after extracting egg-info into site-packages. """ def __init__(self, *args, **kwargs): super(EasyInstallCommand, self).__init__(*args, **kwargs) # NOTE(Aurelius84): Add args and kwargs to make compatible with PY2/PY3 def run(self, *args, **kwargs): super(EasyInstallCommand, self).run(*args, **kwargs) # NOTE: To avoid failing import .so file instead of # python file because they have same name, we rename # .so shared library to another name. for egg_file in self.outputs: filename, ext = os.path.splitext(egg_file) will_rename = False if OS_NAME.startswith('linux') and ext == '.so': will_rename = True elif IS_WINDOWS and ext == '.pyd': will_rename = True if will_rename: new_so_path = filename + "_pd_" + ext if not os.path.exists(new_so_path): os.rename(r'%s' % egg_file, r'%s' % new_so_path) assert os.path.exists(new_so_path) class BuildCommand(build, object): """ Extend build Command to control the behavior of specifying `build_base` root directory. NOTE(Aurelius84): This is a hook subclass inherited Command used to specify customized build_base directory. """ @classmethod def with_options(cls, **options): """ Returns a BuildCommand subclass containing use-defined options. """ class cls_with_options(cls): def __init__(self, *args, **kwargs): kwargs.update(options) cls.__init__(self, *args, **kwargs) return cls_with_options def __init__(self, *args, **kwargs): # Note: shall put before super() self._specified_build_base = kwargs.get('build_base', None) super(BuildCommand, self).__init__(*args, **kwargs) def initialize_options(self): """ build_base is root directory for all sub-command, such as build_lib, build_temp. See `distutils.command.build` for details. """ super(BuildCommand, self).initialize_options() if self._specified_build_base is not None: self.build_base = self._specified_build_base def load(name, sources, extra_cxx_cflags=None, extra_cuda_cflags=None, extra_ldflags=None, extra_include_paths=None, build_directory=None, interpreter=None, verbose=False): """ An Interface to automatically compile C++/CUDA source files Just-In-Time and return callable python function as other Paddle layers API. It will append user defined custom operators in background while building models. It will perform compiling, linking, Python API generation and module loading processes under a individual subprocess. It does not require CMake or Ninja environment and only ``g++/nvcc`` on Linux and clang++ on MacOS. For example it requires GCC compiler with version is greater than 5.4 and linked into ``/usr/bin/cc`` . If compiling Operators supporting GPU device, please make sure ``nvcc`` compiler is installed in local environment. Moreover, `ABI compatibility `_ will be checked to ensure that compiler version from ``cc`` on local machine is compatible with pre-installed Paddle whl in python site-packages. For example if Paddle with CUDA 10.1 is built with GCC 8.2, then the version of user's local machine should satisfy GCC >= 8.2. Otherwise, a fatal error will occur because of ABI compatibility. Compared with ``setup`` interface, it doesn't need extra ``setup.py`` and excute ``python setup.py install`` command. The interface contains all compiling and installing process underground. .. note:: 1. Compiler ABI compatibility is forward compatible. On Linux platform, we recommend to use GCC 8.2 as soft linking condidate of ``/usr/bin/cc`` . 2. Using ``which cc`` to ensure location of ``cc`` and using ``cc --version`` to ensure linking GCC version on Linux. 3. Currenly we support Linux and Windows platfrom. MacOS is supporting... **A simple example:** .. code-block:: text import paddle from paddle.utils.cpp_extension import load custom_op_module = load( name="op_shared_libary_name", # name of shared library sources=['relu_op.cc', 'relu_op.cu'], # source files of cusomized op extra_cxx_cflags=['-DPADDLE_WITH_MKLDNN'], # need to specify the flag if pre-installed Paddle supports MKLDNN extra_cuda_cflags=['-DPADDLE_WITH_MKLDNN'], # need to specify the flag if pre-installed Paddle supports MKLDNN interpreter='python3.7', # optional, specify another python interpreter verbose=True # output log information ) x = paddle.randn([4, 10], dtype='float32') out = custom_op_module.relu(x) Args: name(str): Specify the name of generated shared library file name, not including ``.so`` and ``.dll`` suffix. sources(list[str]): Specify source files name of customized operators. Supporting ``.cc`` , ``.cpp`` for CPP file and ``.cu`` for CUDA file. extra_cxx_cflags(list[str], optional): Specify additional flags used to compile CPP files. By default all basic and framework related flags have been included. If your pre-insall Paddle supported MKLDNN, please add ``-DPADDLE_WITH_MKLDNN`` . Default is None. extra_cuda_cflags(list[str], optional): Specify additional flags used to compile CUDA files. By default all basic and framework related flags have been included. If your pre-insall Paddle supported MKLDNN, please add ``-DPADDLE_WITH_MKLDNN`` . Default None. See `Cuda Compiler Driver NVCC `_ for details. Default is None. extra_ldflags(list[str], optional): Specify additional flags used to link shared library. See `GCC Link Options `_ for details. Default is None. extra_include_paths(list[str], optional): Specify additional include path used to search header files. By default all basic headers are included implicitly from ``site-package/paddle/include`` . Default is None. build_directory(str, optional): Specify root directory path to put shared library file. If set None, it will use ``PADDLE_EXTENSION_DIR`` from os.environ. Use ``paddle.utils.cpp_extension.get_build_directory()`` to see the location. Default is None. interpreter(str, optional): Specify nterpreter path, supporting alias and full path. If set None, it will use `python` as default interpreter. If local environment contains more than one python interpreters and want to use new interpreter to apply compilation, please specify this parameter, such as ``python3.7`` . Default is None. verbose(bool, optional): whether to verbose compiled log information. Default is False Returns: Moudle: A callable python module contains all CustomOp Layer APIs. """ if build_directory is None: build_directory = get_build_directory(verbose) # ensure to use abs path build_directory = os.path.abspath(build_directory) # Will load shared library from 'path' on windows if IS_WINDOWS: os.environ['path'] = build_directory + ';' + os.environ['path'] log_v("build_directory: {}".format(build_directory), verbose) file_path = os.path.join(build_directory, "{}_setup.py".format(name)) sources = [os.path.abspath(source) for source in sources] if extra_cxx_cflags is None: extra_cxx_cflags = [] if extra_cuda_cflags is None: extra_cuda_cflags = [] assert isinstance( extra_cxx_cflags, list ), "Required type(extra_cxx_cflags) == list[str], but received {}".format( extra_cxx_cflags) assert isinstance( extra_cuda_cflags, list ), "Required type(extra_cuda_cflags) == list[str], but received {}".format( extra_cuda_cflags) log_v("additional extra_cxx_cflags: [{}], extra_cuda_cflags: [{}]".format( ' '.join(extra_cxx_cflags), ' '.join(extra_cuda_cflags)), verbose) # write setup.py file and compile it build_base_dir = os.path.join(build_directory, name) _write_setup_file(name, sources, file_path, build_base_dir, extra_include_paths, extra_cxx_cflags, extra_cuda_cflags, extra_ldflags, verbose) _jit_compile(file_path, interpreter, verbose) # import as callable python api custom_op_api = _import_module_from_library(name, build_base_dir, verbose) return custom_op_api