# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os os.environ['CPU_NUM'] = '2' import unittest from fake_reader import fake_imdb_reader import paddle from paddle import fluid from paddle.fluid import core def train(network, use_cuda, batch_size=32, pass_num=2): if use_cuda and not core.is_compiled_with_cuda(): print('Skip use_cuda=True because Paddle is not compiled with cuda') return word_dict_size = 5147 reader = fake_imdb_reader(word_dict_size, batch_size * 40) train_reader = paddle.batch(reader, batch_size=batch_size) data = paddle.static.data( name="words", shape=[-1, 1], dtype="int64", lod_level=1 ) label = paddle.static.data(name="label", shape=[-1, 1], dtype="int64") cost = network(data, label, word_dict_size) cost.persistable = True optimizer = paddle.optimizer.Adagrad(learning_rate=0.2) optimizer.minimize(cost) place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() feeder = fluid.DataFeeder(feed_list=[data, label], place=place) reader = feeder.feed(train_reader()) exe = fluid.Executor(place) fluid.default_startup_program().random_seed = 1 fluid.default_main_program().random_seed = 1 exe.run(fluid.default_startup_program()) train_cp = fluid.default_main_program() fetch_list = [cost] for pass_id in range(pass_num): batch_id = 0 for data in reader(): exe.run( train_cp, feed=data, fetch_list=fetch_list if batch_id % 4 == 0 else [], ) batch_id += 1 if batch_id > 16: break class TestBase(unittest.TestCase): def setUp(self): self.net = None def test_network(self): if self.net is None: return for use_cuda in [True, False]: print(f'network: {self.net.__name__}, use_cuda: {use_cuda}') with fluid.program_guard(fluid.Program(), fluid.Program()): with fluid.scope_guard(core.Scope()): train(self.net, use_cuda)