// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include #include #include #include #include #include #include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/inference/lite/op_teller.h" #include "paddle/fluid/inference/utils/singleton.h" #include "paddle/fluid/framework/ir/graph_pattern_detector.h" #include "paddle/fluid/framework/ir/subgraph_detector.h" #include "paddle/fluid/inference/analysis/ir_passes/lite_subgraph_pass.h" #include "paddle/fluid/string/pretty_log.h" #include "paddle/fluid/inference/lite/engine.h" namespace paddle { namespace inference { namespace analysis { using framework::ir::Node; using framework::ir::Agent; using framework::ir::SubGraphFuser; using framework::ir::Graph; namespace lite { std::string UniqueKey(const std::vector& engine_inputs, const std::vector& engine_outputs, const std::string& id) { std::string engine_hash_key = ""; for (auto name : engine_inputs) { engine_hash_key += name; } for (auto name : engine_outputs) { engine_hash_key += name; } engine_hash_key += id; auto engine_key = std::to_string(std::hash()(engine_hash_key)); return engine_key; } std::vector IOVarsFilter(const std::vector& nodes) { std::set names; for (const auto& node : nodes) { if (node->IsVar() && !node->Var()->Persistable()) { names.insert(node->Name()); } } return std::vector(names.begin(), names.end()); } void StrToBinaryFile(const std::string& path, const std::string& str) { std::ofstream file(path.c_str(), std::ios::binary); file.write(str.c_str(), str.size()); file.close(); } void ModifyHostSubgraphOps( framework::ProgramDesc* host_program, framework::BlockDesc* host_sub_block, const std::vector& subgraph_ops) { for (auto* op_desc : subgraph_ops) { auto* sub_block_op = host_sub_block->AppendOp(); sub_block_op->CopyFrom(*op_desc); if (op_desc->HasAttr("sub_block")) { int32_t global_sub_id = host_sub_block->ID(); auto* op_sub_block = host_program->MutableBlock(op_desc->GetBlockAttrId("sub_block")); op_sub_block->Proto()->set_parent_idx(global_sub_id); } } } void ModifyHostProgram(framework::ProgramDesc* host_program, framework::BlockDesc* host_sub_block, const std::unordered_set& io_var_nodes, const std::vector& subgraph_ops) { for (auto* var_node : io_var_nodes) { auto* sub_block_var = host_sub_block->Var(var_node->Name()); sub_block_var->Proto()->CopyFrom(*var_node->Var()->Proto()); } ModifyHostSubgraphOps(host_program, host_sub_block, subgraph_ops); } void AppendLiteSubBlocks(const std::vector& subgraph_ops, framework::ProgramDesc* engine_program, framework::ProgramDesc* host_program, const int32_t host_sub_id) { std::unordered_map sub_blocks_map; std::unordered_set copied_host_ids; sub_blocks_map[host_sub_id] = framework::kRootBlockIndex; std::function&)> append_sub_blocks; append_sub_blocks = [&](const std::vector& ops) { for (auto* op_desc : ops) { if (op_desc->HasAttr("sub_block")) { int32_t host_op_sub_id = op_desc->GetBlockAttrId("sub_block"); if (copied_host_ids.count(host_op_sub_id)) continue; size_t engine_block_size = engine_program->Size(); auto* host_op_sub_block = host_program->MutableBlock(host_op_sub_id); auto* engine_op_sub_block = engine_program->AppendBlock(*(op_desc->Block())); for (auto* var : host_op_sub_block->AllVars()) { auto* engine_var = engine_op_sub_block->Var(var->Name()); engine_var->Proto()->CopyFrom(*var->Proto()); } for (auto* op : host_op_sub_block->AllOps()) { auto* engine_op = engine_op_sub_block->AppendOp(); engine_op->Proto()->CopyFrom(*op->Proto()); } sub_blocks_map[host_op_sub_id] = engine_block_size; append_sub_blocks(host_op_sub_block->AllOps()); } } }; append_sub_blocks(subgraph_ops); for (size_t i = 0; i < engine_program->Size(); i++) { for (auto* op_desc : engine_program->Block(i).AllOps()) { if (op_desc->HasAttr("sub_block")) { int32_t id = op_desc->GetBlockAttrId("sub_block"); op_desc->SetAttr("sub_block", sub_blocks_map[id]); } } } } // The modification of pass should be a process of framework::desc // (initial) -> proto::desc (flush) -> framework::desc (final). // Ir::Graph is limited to changing the main block, so the sub block // needs to be processed here. void ModifyEngineProgram(Node* merged_node, framework::ProgramDesc* host_program, framework::ProgramDesc* engine_program, const int32_t host_sub_block_id, const std::unordered_set& io_var_nodes, const std::vector& subgraph_ops) { // 1. Fill the main block of lite program. framework::BlockDesc* engine_global_block = engine_program->MutableBlock(framework::kRootBlockIndex); PrependFeedOps(engine_global_block, IOVarsFilter(merged_node->inputs)); for (auto* var_node : io_var_nodes) { framework::VarDesc* sub_block_var = engine_global_block->Var(var_node->Name()); sub_block_var->Proto()->CopyFrom(*var_node->Var()->Proto()); } for (auto* op_desc : subgraph_ops) { auto* sub_block_op = engine_global_block->AppendOp(); sub_block_op->CopyFrom(*op_desc); } PrependFetchOps(engine_global_block, IOVarsFilter(merged_node->outputs)); // 2. Append sub blocks in the lite program. AppendLiteSubBlocks(subgraph_ops, engine_program, host_program, host_sub_block_id); } void OrganizeProgram(Node* merged_node, framework::ProgramDesc* host_program, framework::ProgramDesc* engine_program, std::vector* repetitive_params) { std::vector& subgraph = *Agent(merged_node).subgraph(); PADDLE_ENFORCE_EQ(subgraph.empty(), false, platform::errors::NotFound( "No subgraph found in lite subgraph pass. Please use " "the full model call from Analysis Predictor.")); const framework::BlockDesc& host_global_block = host_program->Block(framework::kRootBlockIndex); framework::BlockDesc* host_sub_block = host_program->AppendBlock(host_global_block); string::PrettyLogDetail("--- detect a sub-graph with %d nodes", subgraph.size()); std::unordered_set io_var_nodes = GetRelatedIOVarNodes(subgraph); for (const auto* node : io_var_nodes) { VLOG(3) << "IO Variable Name: " << node->Name(); } std::vector subgraph_ops; for (auto* op_node : subgraph) { subgraph_ops.push_back(op_node->Op()); } ModifyHostProgram(host_program, host_sub_block, io_var_nodes, subgraph_ops); ModifyEngineProgram(merged_node, host_program, engine_program, host_sub_block->ID(), io_var_nodes, subgraph_ops); *repetitive_params = ExtractParameters(io_var_nodes, true); for (const auto& param : *repetitive_params) { VLOG(3) << "Repetitive param: " << param; } host_program->Flush(); engine_program->Flush(); } } // namespace lite void LiteSubgraphPass::SetUpEngine( framework::ProgramDesc* program, const std::vector& repetitive_params, const std::string& unique_key, bool dump_model) const { inference::lite::EngineConfig config; auto* scope = param_scope(); // When the pass is started, only the persistent variables of the // main block are read. Fluid seems to allow persistence variables // in the sub block, but they are controlled by context, so the // support is suspended here. auto serialize_params = [](std::string* str, framework::Scope* scope, const std::vector& params) { std::ostringstream os; platform::CPUDeviceContext ctx; for (const auto& param : params) { VLOG(3) << "Serialize param: " << param; PADDLE_ENFORCE_NOT_NULL( scope->FindVar(param), platform::errors::NotFound( "Block should already have a '%s' variable", param)); auto* tensor = scope->FindVar(param)->GetMutable(); framework::SerializeToStream(os, *tensor, ctx); } *str = os.str(); }; bool use_gpu = Get("use_gpu"); bool enable_int8 = Get("enable_int8"); bool use_xpu = Get("use_xpu"); int xpu_device_id = Get("xpu_device_id"); int xpu_l3_workspace_size = Get("xpu_l3_workspace_size"); int cpu_math_library_num_threads = Get("cpu_math_library_num_threads"); bool locked = Get("locked"); bool autotune = Get("autotune"); std::string autotune_file = Get("autotune_file"); std::string precision = Get("precision"); bool adaptive_seqlen = Get("adaptive_seqlen"); // NNAdapter Related bool use_nnadapter = Get("use_nnadapter"); std::string nnadapter_model_cache_dir = Get("nnadapter_model_cache_dir"); auto nnadapter_device_names = Get>("nnadapter_device_names"); std::string nnadapter_context_properties = Get("nnadapter_context_properties"); std::string nnadapter_subgraph_partition_config_buffer = Get("nnadapter_subgraph_partition_config_buffer"); std::string nnadapter_subgraph_partition_config_path = Get("nnadapter_subgraph_partition_config_path"); auto nnadapter_model_cache_buffer = Get>>("nnadapter_model_cache_buffer"); auto nnadapter_model_cache_token = Get>("nnadapter_model_cache_token"); lite_api::TargetType target_type; if (use_gpu) { target_type = TARGET(kCUDA); } else if (use_xpu) { target_type = TARGET(kXPU); } else if (use_nnadapter) { #ifdef LITE_WITH_NNADAPTER target_type = TARGET(kNNAdapter); #endif } else { #ifdef PADDLE_WITH_ARM target_type = TARGET(kARM); #else target_type = TARGET(kX86); #endif } paddle::lite_api::PrecisionType precision_type = enable_int8 ? PRECISION(kInt8) : PRECISION(kFloat); serialize_params(&config.param, scope, repetitive_params); config.model = program->Proto()->SerializeAsString(); config.valid_places = { // Notice: The ordering here determines the device where the // input tensor of the Lite engine is located, and then affects // whether tensor sharing is feasible. paddle::lite_api::Place({target_type, precision_type}), paddle::lite_api::Place({target_type, PRECISION(kInt64)}), paddle::lite_api::Place({target_type, PRECISION(kFloat)}), #ifdef PADDLE_WITH_ARM paddle::lite_api::Place({TARGET(kARM), precision_type}), paddle::lite_api::Place({TARGET(kARM), PRECISION(kFloat)}), #else paddle::lite_api::Place({TARGET(kX86), precision_type}), paddle::lite_api::Place({TARGET(kX86), PRECISION(kFloat)}), #endif paddle::lite_api::Place({TARGET(kHost), PRECISION(kFloat)}), }; config.cpu_math_library_num_threads = cpu_math_library_num_threads; config.xpu_l3_workspace_size = xpu_l3_workspace_size; config.device_id = xpu_device_id; config.locked = locked; config.autotune = autotune; config.autotune_file = autotune_file; config.precision = precision; config.adaptive_seqlen = adaptive_seqlen; // NNAdapter Related config.nnadapter_model_cache_dir = nnadapter_model_cache_dir; config.nnadapter_device_names = nnadapter_device_names; config.nnadapter_context_properties = nnadapter_context_properties; config.nnadapter_subgraph_partition_config_buffer = nnadapter_subgraph_partition_config_buffer; config.nnadapter_subgraph_partition_config_path = nnadapter_subgraph_partition_config_path; config.nnadapter_model_cache_buffer = nnadapter_model_cache_buffer; config.nnadapter_model_cache_token = nnadapter_model_cache_token; if (dump_model) { lite::StrToBinaryFile("./model.bin", config.model); lite::StrToBinaryFile("./param.bin", config.param); } inference::Singleton::Global().Create( unique_key, config); } void LiteSubgraphPass::BuildOperator( Node* merged_node, framework::ProgramDesc* global_program, std::vector* repetitive_params) const { framework::ProgramDesc engine_program; const std::string id = std::to_string(Get("predictor_id")); const std::vector input_names = lite::IOVarsFilter(merged_node->inputs); const std::vector output_names = lite::IOVarsFilter(merged_node->outputs); const std::string unique_key = lite::UniqueKey(input_names, output_names, id); lite::OrganizeProgram(merged_node, global_program, &engine_program, repetitive_params); SetUpEngine(&engine_program, *repetitive_params, unique_key); auto* op_desc = merged_node->Op(); op_desc->SetInput("Xs", input_names); op_desc->SetOutput("Ys", output_names); op_desc->SetType("lite_engine"); op_desc->SetAttr("engine_key", unique_key); op_desc->SetAttr("enable_int8", Get("enable_int8")); op_desc->SetAttr("use_gpu", Get("use_gpu")); op_desc->SetAttr("zero_copy", Get("zero_copy")); } void LiteSubgraphPass::ApplyImpl(framework::ir::Graph* graph) const { framework::ir::FusePassBase::Init("lite_subgraph_pass", graph); framework::ProgramDesc* global_program = Get("program"); auto& lite_ops_filter = Get>("lite_ops_filter"); auto teller = [&lite_ops_filter](const Node* node) { if (!node->IsOp() || !node->Op()) return false; else if (node->Op()->Type() == "feed" || node->Op()->Type() == "fetch") return false; else if (std::find(lite_ops_filter.begin(), lite_ops_filter.end(), node->Op()->Type()) != lite_ops_filter.end()) return false; return inference::lite::OpTeller::Global().Tell(node->Op()->Type(), *node->Op()); }; SubGraphFuser fuser(graph, teller, 0 /* min_subgraph_size */, "lite_engine"); fuser(); std::vector repetitive_params; for (auto* node : graph->Nodes()) { if (node->IsOp() && !Agent(node).subgraph()->empty()) { BuildOperator(node, global_program, &repetitive_params); std::unordered_set nodes2remove( Agent(node).subgraph()->begin(), Agent(node).subgraph()->end()); framework::ir::GraphSafeRemoveNodes(graph, nodes2remove); } } std::unordered_set nodes2remove; for (auto* node : graph->Nodes()) { if (node->IsOp() && Agent(node).deleted()) { nodes2remove.insert(node); } } framework::ir::GraphSafeRemoveNodes(graph, nodes2remove); graph->Set(framework::ir::kRepetitiveParamAttr, new std::vector(repetitive_params)); } } // namespace analysis } // namespace inference } // namespace paddle REGISTER_PASS(lite_subgraph_pass, paddle::inference::analysis::LiteSubgraphPass);