# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from ... import fluid from ...fluid import dygraph from ...fluid import layers as F from ...fluid.layer_helper import LayerHelper from ...fluid.data_feeder import check_variable_and_dtype def l2_norm(x, axis, epsilon=1e-12, name=None): if len(x.shape) == 1: axis = 0 check_variable_and_dtype(x, "X", ("float32", "float64"), "norm") helper = LayerHelper("l2_normalize", **locals()) out = helper.create_variable_for_type_inference(dtype=x.dtype) norm = helper.create_variable_for_type_inference(dtype=x.dtype) helper.append_op( type="norm", inputs={"X": x}, outputs={"Out": out, "Norm": norm}, attrs={ "axis": 1 if axis is None else axis, "epsilon": epsilon, }) return F.squeeze(norm, axes=[axis]) def norm_except_dim(p, dim): shape = p.shape ndims = len(shape) if dim == -1: return F.sqrt(F.reduce_sum(F.square(p)) + 1e-12) elif dim == 0: p_matrix = F.reshape(p, (shape[0], -1)) return l2_norm(p_matrix, axis=1) elif dim == ndims - 1: p_matrix = F.reshape(p, (-1, shape[-1])) return l2_norm(p_matrix, axis=0) else: perm = list(range(ndims)) perm[0] = dim perm[dim] = 0 p_transposed = F.transpose(p, perm) return norm_except_dim(p_transposed, 0) def _weight_norm(v, g, dim): shape = v.shape ndims = len(shape) if dim == -1: v_normalized = v / (F.sqrt(F.reduce_sum(F.square(v))) + 1e-12) elif dim == 0: p_matrix = F.reshape(v, (shape[0], -1)) v_normalized = F.l2_normalize(p_matrix, axis=1) v_normalized = F.reshape(v_normalized, shape) elif dim == ndims - 1: p_matrix = F.reshape(v, (-1, shape[-1])) v_normalized = F.l2_normalize(p_matrix, axis=0) v_normalized = F.reshape(v_normalized, shape) else: perm = list(range(ndims)) perm[0] = dim perm[dim] = 0 p_transposed = F.transpose(v, perm) transposed_shape = p_transposed.shape p_matrix = F.reshape(p_transposed, (p_transposed.shape[0], -1)) v_normalized = F.l2_normalize(p_matrix, axis=1) v_normalized = F.reshape(v_normalized, transposed_shape) v_normalized = F.transpose(v_normalized, perm) weight = F.elementwise_mul( v_normalized, g, axis=dim if dim is not None else -1) return weight class WeightNorm(object): def __init__(self, name, dim): if dim is None: dim = -1 self.name = name self.dim = dim def compute_weight(self, layer): g = getattr(layer, self.name + '_g') v = getattr(layer, self.name + '_v') return _weight_norm(v, g, self.dim) @staticmethod def apply(layer, name, dim): for k, hook in layer._forward_pre_hooks.items(): if isinstance(hook, WeightNorm) and hook.name == name: raise RuntimeError("Cannot register two weight_norm hooks on " "the same parameter {}".format(name)) if dim is None: dim = -1 # support dim is negative numeber, (dim = -1) == (dim = None) weight_dim = len(layer._parameters[name].shape) assert ( dim < weight_dim and dim >= -1 * weight_dim ), "dim must set between [-R, R), R means the dimension of weight." if dim != -1: dim = (dim + weight_dim) % weight_dim fn = WeightNorm(name, dim) w = getattr(layer, name) del layer._parameters[name] g_var = norm_except_dim(w, dim) v = layer.create_parameter(w.shape, dtype=w.dtype) layer.add_parameter(name + "_v", v) g = layer.create_parameter(g_var.shape, dtype=g_var.dtype) layer.add_parameter(name + '_g', g) with dygraph.no_grad(): F.assign(w, v) F.assign(g_var, g) setattr(layer, name, fn.compute_weight(layer)) layer.register_forward_pre_hook(fn) return fn def remove(self, layer): w_var = self.compute_weight(layer) delattr(layer, self.name) del layer._parameters[self.name + '_g'] del layer._parameters[self.name + '_v'] w = layer.create_parameter(w_var.shape, dtype=w_var.dtype) layer.add_parameter(self.name, w) with dygraph.no_grad(): F.assign(w_var, w) def __call__(self, layer, inputs): setattr(layer, self.name, self.compute_weight(layer)) def weight_norm(layer, name='weight', dim=0): r""" This weight_norm layer applies weight normalization to a parameter according to the following formula: .. math:: \mathbf{w} = g \dfrac{v}{\|v\|} Weight normalization is a reparameterization of the weight vectors in a neural network that decouples the magnitude of those weight vectors from their direction. Weight normalization replaces the parameter specified by `name`(eg: 'weight') with two parameters: one parameter specifying the magnitude (eg: 'weight_g') and one parameter specifying the direction (eg: 'weight_v'). Weight normalization has been implemented as discussed in this paper: `Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks `_. Parameters: layer(Layer): Layer of paddle, which has weight. name(str, optional): Name of the weight parameter. Default: 'weight'. dim(int, optional): Dimension over which to compute the norm. Dim is a non-negative number which is less than the rank of weight Tensor. For Example, dim can be chosen from 0, 1, 2, 3 for convolution whose weight shape is [cout, cin, kh, kw] and rank is 4. If dim is set to None, meaning that all elements will be normalized. Default: 0. Returns: Origin layer with weight norm hook. Examples: .. code-block:: python import numpy as np from paddle.nn import Conv2D from paddle.nn.utils import weight_norm x = np.array([[[[0.3, 0.4], [0.3, 0.07]], [[0.83, 0.37], [0.18, 0.93]]]]).astype('float32') conv = Conv2D(3, 5, 3) wn = weight_norm(conv) print(conv.weight_g.shape) # [5] print(conv.weight_v.shape) # [5, 3, 3, 3] """ WeightNorm.apply(layer, name, dim) return layer def remove_weight_norm(layer, name='weight'): """ remove weight normalization from layer. Parameters: layer(Layer): Layer of paddle, which has weight. name(str, optional): Name of the weight parameter. Default: 'weight'. Returns: Origin layer without weight norm Examples: .. code-block:: python import paddle from paddle.nn import Conv2D from paddle.nn.utils import weight_norm, remove_weight_norm conv = Conv2D(3, 5, 3) wn = weight_norm(conv) remove_weight_norm(conv) print(conv.weight_g) # AttributeError: 'Conv2D' object has no attribute 'weight_g' """ for k, hook in layer._forward_pre_hooks.items(): if isinstance(hook, WeightNorm) and hook.name == name: hook.remove(layer) del layer._forward_pre_hooks[k] return layer raise ValueError("weight_norm of '{}' not found in {}".format(name, layer))