# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy from copy import deepcopy import time from numpy import sort from paddle.fluid import core from paddle.fluid import framework from .utils import is_gradient_clip_op, __not_shape_var_type__ from .operators import find_compatible_distributed_operator_impls from .dist_context import get_default_distributed_context, _node_id from .dist_tensor import DistributedTensor from .dist_op import DistributedOperator from .dist_attribute import TensorDistributedAttribute from .dist_attribute import OperatorDistributedAttribute from .process_mesh import ProcessMesh from .process_group import get_world_process_group from paddle.distributed.fleet.meta_optimizers.common import OpRole def compute_compatible_process_mesh(process_mesh_list): """Compute the compatible process mesh given a list of process meshes.""" if not process_mesh_list: return None def _compute_compatible_process_mesh_two(pm1, pm2): if pm1 is None: return True, pm2 if pm2 is None: return True, pm1 if pm1 == pm2: return True, pm1 if pm1.processes == pm2.processes: if len(pm1.topology) >= len(pm2.topology): return True, pm1 else: return True, pm2 process_set1 = set(pm1.processes) process_set2 = set(pm2.processes) if process_set1.issubset(process_set2): return True, pm2 if process_set2.issubset(process_set1): return True, pm1 return False, None compatible_result = None for process_mesh in process_mesh_list: compatible, compatible_result = _compute_compatible_process_mesh_two( compatible_result, process_mesh ) if not compatible: return None return copy.deepcopy(compatible_result) def compute_compatible_dim_mapping(dim_mapping_list): """Compute the compatible dim mapping given a list of dim mapping.""" if not dim_mapping_list: return None def _compute_compatible_dim_mapping_two(dm1, dm2): if dm1 == -1: return True, dm2 if dm2 == -1: return True, dm1 if dm1 == dm2: return True, dm1 return False, None compatible_result = -1 for mapping in dim_mapping_list: compatible, compatible_result = _compute_compatible_dim_mapping_two( compatible_result, mapping ) if not compatible: return None return compatible_result def compute_compatible_dims_mapping(dims_mapping_list): """Compute the compatible dims mapping given a list of dims mapping. Each of dims mapping is also a list. """ if not dims_mapping_list: return None length = len(dims_mapping_list[0]) for dims_mapping in dims_mapping_list: if dims_mapping is None: return None if len(dims_mapping) != length: return None compatible_result = [] for dim_mappings in zip(*dims_mapping_list): compatible_dim_mapping = compute_compatible_dim_mapping( list(dim_mappings) ) if compatible_dim_mapping is None: return None compatible_result.append(compatible_dim_mapping) return compatible_result def merge_process_mesh_two(pm1, pm2): process_set1 = set() process_set2 = set() if pm1 is None and pm2 is None: return None if pm1 is not None: process_set1 = set(pm1.processes) if pm2 is not None: process_set2 = set(pm2.processes) merged_process_set = process_set1.union(process_set2) merged_process_mesh = ProcessMesh(list(merged_process_set)) return merged_process_mesh def _validate_dims_mapping(dims_mapping, process_mesh): if dims_mapping is None: return False for i in range(len(dims_mapping)): if dims_mapping[i] < -1 or dims_mapping[i] >= len( process_mesh.topology ): return False for i in range(len(process_mesh.topology)): if dims_mapping.count(i) > 1: return False return True class Completer: def __init__(self, dist_context): assert dist_context is not None self._dist_context = dist_context self._has_prepared = False def _update_tensor_node_dims_mapping(self, tensor_node, fwd=True): changed = False if (not tensor_node.is_var()) or (tensor_node.var() is None): return False tensor_desc = tensor_node.var() # Skip reader tensor if ( tensor_desc.type() == core.VarDesc.VarType.READER or tensor_desc.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY or tensor_desc.type == core.VarDesc.VarType.STEP_SCOPES ): return False tensor_dist_attr = self._dist_context.get_tensor_dist_attr_for_graph( tensor_node ) assert tensor_dist_attr is not None if tensor_dist_attr.is_annotated("dims_mapping"): return False tensor_dims_mapping = tensor_dist_attr.dims_mapping if fwd: dims_mapping_list = [] for pred_op_node in tensor_node.inputs: if pred_op_node.op() is not None: if ( pred_op_node.op().type() == "create_py_reader" or pred_op_node.op().type() == "create_double_buffer_reader" or pred_op_node.op().type() == "read" ): continue op_dist_attr = ( self._dist_context.get_op_dist_attr_for_graph( pred_op_node ) ) if ( op_dist_attr.process_mesh == tensor_dist_attr.process_mesh ): op_dims_mapping = op_dist_attr.get_output_dims_mapping( tensor_desc.name() ) dims_mapping_list.append(op_dims_mapping) dims_mapping_list.append(tensor_dims_mapping) compatible_dims_mapping = compute_compatible_dims_mapping( dims_mapping_list ) if not _validate_dims_mapping( compatible_dims_mapping, tensor_dist_attr.process_mesh ): return False if (compatible_dims_mapping is not None) and ( compatible_dims_mapping != tensor_dims_mapping ): tensor_dist_attr.dims_mapping = compatible_dims_mapping changed = True else: dims_mapping_list = [] for succ_op_node in tensor_node.outputs: if succ_op_node.op() is not None: if ( succ_op_node.op().type() == "create_py_reader" or succ_op_node.op().type() == "create_double_buffer_reader" or succ_op_node.op().type() == "read" ): continue op_dist_attr = ( self._dist_context.get_op_dist_attr_for_graph( succ_op_node ) ) if ( op_dist_attr.process_mesh == tensor_dist_attr.process_mesh ): op_dims_mapping = op_dist_attr.get_input_dims_mapping( tensor_desc.name() ) dims_mapping_list.append(op_dims_mapping) dims_mapping_list.append(tensor_dims_mapping) compatible_dims_mapping = compute_compatible_dims_mapping( dims_mapping_list ) if not _validate_dims_mapping( compatible_dims_mapping, tensor_dist_attr.process_mesh ): return False if (compatible_dims_mapping is not None) and ( compatible_dims_mapping != tensor_dims_mapping ): tensor_dist_attr.dims_mapping = compatible_dims_mapping changed = True return changed def _update_op_node_dims_mapping(self, op_node, fwd=True): changed = False if (not op_node.is_op()) or (op_node.op() is None): return False # Skip reader op op_desc = op_node.op() if ( op_desc.type() == "create_py_reader" or op_desc.type() == "create_double_buffer_reader" or op_desc.type() == "while" or op_desc.type() == "read" ): return False dist_op = self._dist_context.get_dist_op_for_graph(op_node) op_dist_attr = dist_op.dist_attr original_op_dist_attr = copy.deepcopy(op_dist_attr) if fwd: for tensor_node in op_node.inputs: if tensor_node.is_var() and tensor_node.var() is not None: if tensor_node.var().type() == core.VarDesc.VarType.READER: continue tensor_desc = tensor_node.var() if op_dist_attr.is_annotated_input_dims_mapping( tensor_desc.name() ): continue tensor_dist_attr = ( self._dist_context.get_tensor_dist_attr_for_graph( tensor_node ) ) if ( op_dist_attr.process_mesh == tensor_dist_attr.process_mesh ): tensor_dims_mapping = tensor_dist_attr.dims_mapping op_dims_mapping = op_dist_attr.get_input_dims_mapping( tensor_desc.name() ) compatible_dims_mapping = ( compute_compatible_dims_mapping( [op_dims_mapping, tensor_dims_mapping] ) ) if not _validate_dims_mapping( compatible_dims_mapping, op_dist_attr.process_mesh ): continue if (compatible_dims_mapping is not None) and ( compatible_dims_mapping != op_dims_mapping ): op_dist_attr.set_input_dims_mapping( tensor_desc.name(), compatible_dims_mapping ) changed = True # Find the most compatible implemenetations from the distributed operator op_dist_impls = find_compatible_distributed_operator_impls( dist_op, fwd=True ) if op_dist_impls is not None: not_compatible = True backup_op_dist_attr = copy.deepcopy(op_dist_attr) backup_changed = changed for op_dist_impl in op_dist_impls: dim_changed = op_dist_impl.update_dims_mapping(dist_op) if dim_changed: changed = True if ( op_dist_impl.is_auto_compatible(dist_op) and dist_op.validate_dist_attr() ): if op_dist_impl.type == "elementwise": op_dist_attr.impl_type = "default" else: op_dist_attr.impl_type = op_dist_impl.type # op_dist_attr.impl_type = op_dist_impl.type op_dist_attr.impl_idx = op_dist_impl.idx not_compatible = False break else: dist_op.dist_attr = backup_op_dist_attr changed = backup_changed if not_compatible: dist_op.dist_attr = original_op_dist_attr changed = False else: dist_op.dist_attr = original_op_dist_attr changed = False else: for tensor_node in op_node.outputs: if tensor_node.is_var() and tensor_node.var() is not None: if tensor_node.var().type() == core.VarDesc.VarType.READER: continue tensor_desc = tensor_node.var() if op_dist_attr.is_annotated_output_dims_mapping( tensor_desc.name() ): continue tensor_dist_attr = ( self._dist_context.get_tensor_dist_attr_for_graph( tensor_node ) ) if ( op_dist_attr.process_mesh == tensor_dist_attr.process_mesh ): tensor_dims_mapping = tensor_dist_attr.dims_mapping op_dims_mapping = op_dist_attr.get_output_dims_mapping( tensor_desc.name() ) compatible_dims_mapping = ( compute_compatible_dims_mapping( [op_dims_mapping, tensor_dims_mapping] ) ) if not _validate_dims_mapping( compatible_dims_mapping, op_dist_attr.process_mesh ): continue if (compatible_dims_mapping is not None) and ( compatible_dims_mapping != op_dims_mapping ): op_dist_attr.set_output_dims_mapping( tensor_desc.name(), compatible_dims_mapping ) changed = True # Find the most compatible implemenetations from the distributed operator op_dist_impls = find_compatible_distributed_operator_impls( dist_op, fwd=False ) if op_dist_impls is not None: not_compatible = True backup_op_dist_attr = copy.deepcopy(op_dist_attr) backup_changed = changed for op_dist_impl in op_dist_impls: dim_changed = op_dist_impl.update_dims_mapping(dist_op) if dim_changed: changed = True if ( op_dist_impl.is_auto_compatible(dist_op) and dist_op.validate_dist_attr() ): if op_dist_impl.type == "elementwise": op_dist_attr.impl_type = "default" else: op_dist_attr.impl_type = op_dist_impl.type # op_dist_attr.impl_type = op_dist_impl.type op_dist_attr.impl_idx = op_dist_impl.idx not_compatible = False break else: dist_op.dist_attr = backup_op_dist_attr changed = backup_changed if not_compatible: dist_op.dist_attr = original_op_dist_attr changed = False else: dist_op.dist_attr = original_op_dist_attr changed = False return changed def _update_dims_mapping_between_graphs(self): changed = False for parent_node, child_node in self._node_pairs_between_graphs: parent_node_dist_attr = self._dist_context.get_dist_attr_for_graph( parent_node ) child_node_dist_attr = self._dist_context.get_dist_attr_for_graph( child_node ) if ( parent_node_dist_attr.process_mesh != child_node_dist_attr.process_mesh ): continue parent_node_dims_mapping = parent_node_dist_attr.dims_mapping child_node_dims_mapping = child_node_dist_attr.dims_mapping compatible_dims_mapping = compute_compatible_dims_mapping( [parent_node_dims_mapping, child_node_dims_mapping] ) if not _validate_dims_mapping( compatible_dims_mapping, parent_node_dist_attr.process_mesh ): return False if (compatible_dims_mapping is not None) and ( compatible_dims_mapping != parent_node_dims_mapping ): parent_node_dist_attr.dims_mapping = compatible_dims_mapping changed = True if (compatible_dims_mapping is not None) and ( compatible_dims_mapping != child_node_dims_mapping ): child_node_dist_attr.dims_mapping = compatible_dims_mapping changed = True return changed def _update_dims_mapping_for_special(self): # Set the dims_mapping of a tensor to the dims_mapping inside the op which produces it op_nodes = self._dist_context._serial_ordered_op_nodes # NOTE: this list may be changed if Paddle changes the existing rules. related_reader_ops = [ "create_py_reader", "create_double_buffer_reader", "read", ] for op_node in op_nodes: if ( op_node.op() is not None and op_node.op().type() in related_reader_ops ): continue op_dist_attr = self._dist_context.get_dist_attr_for_graph(op_node) for tensor_node in op_node.outputs: if tensor_node.is_var() and tensor_node.var() is not None: if tensor_node.var().type() == core.VarDesc.VarType.READER: continue tensor_desc = tensor_node.var() tensor_dist_attr = ( self._dist_context.get_tensor_dist_attr_for_graph( tensor_node ) ) if ( op_dist_attr.process_mesh == tensor_dist_attr.process_mesh ): op_dims_mapping = op_dist_attr.get_output_dims_mapping( tensor_desc.name() ) tensor_dist_attr.dims_mapping = op_dims_mapping def _update_dims_mapping(self): # Complete dims_mapping for each node reach_fix_point = False while not reach_fix_point: changed = False for is_fwd in [True, False]: all_nodes = ( self._dist_context.serial_ordered_nodes if is_fwd else reversed(self._dist_context.serial_ordered_nodes) ) for node in all_nodes: if node.is_var() and node.var() is not None: tensor_changed = self._update_tensor_node_dims_mapping( node, fwd=is_fwd ) if tensor_changed: changed = True if node.is_op() and node.op() is not None: op_changed = self._update_op_node_dims_mapping( node, fwd=is_fwd ) if op_changed: changed = True graph_changed = self._update_dims_mapping_between_graphs() if graph_changed: changed = True if changed: reach_fix_point = False else: reach_fix_point = True # NOTE: this will be removed after changing the reshard rule self._update_dims_mapping_for_special() def _update_process_mesh_by_nearest(self, op_node, nearest_op_node): op_dist_attr = self._dist_context.get_dist_attr_for_graph(op_node) # Set the process mesh of the op node by its nearest op node if not op_dist_attr.is_annotated("process_mesh"): process_mesh = op_dist_attr.process_mesh nearest_op_dis_attr = self._dist_context.get_dist_attr_for_graph( nearest_op_node ) nearest_process_mesh = nearest_op_dis_attr.process_mesh compatible_process_mesh = compute_compatible_process_mesh( [process_mesh, nearest_process_mesh] ) if ( compatible_process_mesh is not None and process_mesh != compatible_process_mesh ): op_dist_attr.process_mesh = compatible_process_mesh # Skip the process_mesh setting of inputs and outputs of while_op if op_dist_attr.op_type == "while": return # Set the process mesh of the op node's leaf-inputs for tensor_node in op_node.inputs: if tensor_node.is_var() and tensor_node.var() is not None: tensor_dist_attr = ( self._dist_context.get_tensor_dist_attr_for_graph( tensor_node ) ) if tensor_dist_attr.is_annotated("process_mesh"): continue # Skip the non-leaf var node if len(tensor_node.inputs) != 0: continue compatible_process_mesh = compute_compatible_process_mesh( [tensor_dist_attr.process_mesh, op_dist_attr.process_mesh] ) if ( compatible_process_mesh is not None and tensor_dist_attr.process_mesh != compatible_process_mesh ): tensor_dist_attr.process_mesh = compatible_process_mesh # Set the process mesh of the op node's outputs for tensor_node in op_node.outputs: if tensor_node.is_var() and tensor_node.var() is not None: tensor_dist_attr = ( self._dist_context.get_tensor_dist_attr_for_graph( tensor_node ) ) if tensor_dist_attr.is_annotated("process_mesh"): continue compatible_process_mesh = compute_compatible_process_mesh( [tensor_dist_attr.process_mesh, op_dist_attr.process_mesh] ) if ( compatible_process_mesh is not None and tensor_dist_attr.process_mesh != compatible_process_mesh ): tensor_dist_attr.process_mesh = compatible_process_mesh def _update_process_mesh_for_specials(self): def _find_nearest_tensor_node_before(nodes, idx, var_name): for node in reversed(nodes[:idx]): if ( node.is_var() and node.var() is not None and node.var().name() == var_name ): return node def _find_nearest_tensor_node_after(nodes, idx, var_name): for node in nodes[idx + 1 :]: if ( node.is_var() and node.var() is not None and node.var().name() == var_name ): return node def _find_nodes_related_to_cond(source_node): related_nodes = [] visited = set() frontier = list() frontier.append(source_node) # BFS while len(frontier) != 0: cur = frontier[0] frontier = frontier[1:] if _node_id(cur) in visited: continue # TODO: need more restrictions neighbors = cur.inputs + cur.outputs for node in neighbors: if node.is_var() and node.var() is not None: if ( node.var().type() != core.VarDesc.VarType.READER and len(node.var().shape()) == 1 ): frontier.append(node) related_nodes.append(node) if node.is_op() and node.op() is not None: flag = True if ( node.op().type() == "create_py_reader" or node.op().type() == "create_double_buffer_reader" or node.op().type() == "read" ): flag = False for tensor_node in node.inputs: if ( tensor_node.is_var() and tensor_node.var() is not None ): if ( tensor_node.var().type() in __not_shape_var_type__ or len(tensor_node.var().shape()) != 1 ): flag = False break for tensor_node in node.outputs: if ( tensor_node.is_var() and tensor_node.var() is not None ): if ( tensor_node.var().type() in __not_shape_var_type__ or len(tensor_node.var().shape()) != 1 ): flag = False break if flag: frontier.append(node) related_nodes.append(node) visited.add(_node_id(cur)) return related_nodes def _make_dims_mapping_replicate(dist_attr): if isinstance(dist_attr, TensorDistributedAttribute): for i, _ in enumerate(dist_attr.dims_mapping): dist_attr.dims_mapping[i] = -1 if isinstance(dist_attr, OperatorDistributedAttribute): for arg_name in dist_attr.inputs_dist_attrs.keys(): new_dims_mapping = [] dims_mapping = dist_attr.get_input_dims_mapping(arg_name) for _ in dims_mapping: new_dims_mapping.append(-1) dist_attr.set_input_dims_mapping(arg_name, new_dims_mapping) for arg_name in dist_attr.outputs_dist_attrs.keys(): new_dims_mapping = [] dims_mapping = dist_attr.get_output_dims_mapping(arg_name) for _ in dims_mapping: new_dims_mapping.append(-1) dist_attr.set_output_dims_mapping( arg_name, new_dims_mapping ) # Amend the process meshes related to while_op for while_op_node, while_op_node_idx in self._while_op_nodes.values(): sub_graph_id = while_op_node.op()._block_attr_id("sub_block") sub_graph = self._dist_context.serial_graph.get_sub_graph( sub_graph_id ) sub_graph_nodes = list(sub_graph.all_nodes()) while_dist_op = self._dist_context.get_dist_op_for_graph( while_op_node ) while_op_dist_attr = while_dist_op.dist_attr # Step 1: set the process mesh of while_op to the merged process mesh of its subblock merged_process_mesh = while_op_dist_attr.process_mesh for node in sub_graph_nodes: if (node.is_var() and node.var() is not None) or ( node.is_op() and node.op() is not None ): dist_attr = self._dist_context.get_dist_attr_for_graph(node) merged_process_mesh = merge_process_mesh_two( merged_process_mesh, dist_attr.process_mesh ) while_op_dist_attr.process_mesh = merged_process_mesh _make_dims_mapping_replicate(while_op_dist_attr) # Step 2: set the related nodes of while_op to the process mesh of while_op # Step 2.1: Find related nodes of cond var the graph of while_op cond_tensor_related_nodes = [] cond_tensor_name = while_op_node.op().input("Condition")[0] cond_tensor_node = None for node in while_op_node.inputs: if ( node.is_var() and node.var() is not None and node.var().name() == cond_tensor_name ): cond_tensor_node = node cond_tensor_related_nodes.append(cond_tensor_node) break cond_tensor_related_nodes.extend( _find_nodes_related_to_cond(cond_tensor_node) ) # Step 2.2: Find related nodes of cond var in the subgraph of while_op cond_tensor_node = None for node in reversed(sub_graph_nodes): if ( node.is_var() and node.var() is not None and node.var().name() == cond_tensor_name and len(node.outputs) == 0 ): cond_tensor_node = node break cond_tensor_related_nodes.extend( _find_nodes_related_to_cond(cond_tensor_node) ) # Step 2.3: Add the StepScops output of while_op stepscopes_tensor_name = while_op_node.op().output("StepScopes")[0] stepscopes_tensor_node = None for output_node in while_op_node.outputs: if ( output_node.is_var() and output_node.var() is not None and output_node.var().name() == stepscopes_tensor_name ): stepscopes_tensor_node = output_node cond_tensor_related_nodes.append(stepscopes_tensor_node) # Step 2.4: Set the process meshes of all nodes related to cond var to the process mesh of while op for node in cond_tensor_related_nodes: tensor_dist_attr = self._dist_context.get_dist_attr_for_graph( node ) tensor_dist_attr.process_mesh = merged_process_mesh _make_dims_mapping_replicate(tensor_dist_attr) # Step 3: set the process meshes of the inputs in while_op to the process meshes of the outside input nodes while_op_inputs_dist_attrs = while_op_dist_attr.inputs_dist_attrs for ( tensor_name, tensor_dist_attr, ) in while_op_inputs_dist_attrs.items(): nearest_tensor_node = _find_nearest_tensor_node_before( self._dist_context.serial_ordered_nodes, while_op_node_idx, tensor_name, ) nearest_tensor_dist_attr = ( self._dist_context.get_dist_attr_for_graph( nearest_tensor_node ) ) tensor_dist_attr.process_mesh = ( nearest_tensor_dist_attr.process_mesh ) # Step 4: set the process meshes of the outputs in while_op to the process meshes of the outside output nodes while_op_outputs_dist_attrs = while_op_dist_attr.outputs_dist_attrs for ( tensor_name, tensor_dist_attr, ) in while_op_outputs_dist_attrs.items(): nearest_tensor_node = _find_nearest_tensor_node_before( self._dist_context.serial_ordered_nodes, while_op_node_idx, tensor_name, ) if nearest_tensor_node is None: nearest_tensor_node = _find_nearest_tensor_node_after( self._dist_context.serial_ordered_nodes, while_op_node_idx, tensor_name, ) nearest_tensor_dist_attr = ( self._dist_context.get_dist_attr_for_graph( nearest_tensor_node ) ) tensor_dist_attr.process_mesh = ( nearest_tensor_dist_attr.process_mesh ) # Amend the process meshes related to array for array_node_list in self._array_nodes.values(): merged_process_mesh = None for array_node in array_node_list: dist_attr = self._dist_context.get_dist_attr_for_graph( array_node ) merged_process_mesh = merge_process_mesh_two( merged_process_mesh, dist_attr.process_mesh ) for array_node in array_node_list: dist_attr = self._dist_context.get_dist_attr_for_graph( array_node ) dist_attr.process_mesh = merged_process_mesh _make_dims_mapping_replicate(dist_attr) def _update_process_mesh_between_graphs(self): for parent_node, child_node in self._node_pairs_between_graphs: parent_node_dist_attr = self._dist_context.get_dist_attr_for_graph( parent_node ) child_node_dist_attr = self._dist_context.get_dist_attr_for_graph( child_node ) parent_node_dist_attr.process_mesh = ( child_node_dist_attr.process_mesh ) compatible_process_mesh = compute_compatible_process_mesh( [ parent_node_dist_attr.process_mesh, child_node_dist_attr.process_mesh, ] ) if ( compatible_process_mesh is not None and parent_node_dist_attr.process_mesh != compatible_process_mesh ): parent_node_dist_attr.process_mesh = compatible_process_mesh if ( compatible_process_mesh is not None and child_node_dist_attr.process_mesh != compatible_process_mesh ): child_node_dist_attr.process_mesh = compatible_process_mesh def _update_process_mesh(self): ordered_op_nodes = self._dist_context._serial_ordered_op_nodes # Step 1: Set the annotated process meshes from tensors to the first ops using them ordered_tensor_nodes = self._dist_context._serial_ordered_tensor_nodes for tensor_node in ordered_tensor_nodes: tensor_dist_attr = ( self._dist_context.get_tensor_dist_attr_for_graph(tensor_node) ) if not tensor_dist_attr.is_annotated("process_mesh"): continue first_op_node = None for op_node in ordered_op_nodes: # TODO: Need a better rule for the control flow ops. # For now, do not set the process mesh of while_op from its inputs if op_node.op().type() == "while": continue for input_tensor_node in op_node.inputs: if _node_id(tensor_node) == _node_id(input_tensor_node): first_op_node = op_node break if first_op_node is not None: break if first_op_node is None: continue op_dist_attr = self._dist_context.get_dist_attr_for_graph( first_op_node ) if op_dist_attr is not None and not op_dist_attr.is_annotated( "process_mesh" ): compatible_process_mesh = compute_compatible_process_mesh( [tensor_dist_attr.process_mesh, op_dist_attr.process_mesh] ) if ( compatible_process_mesh is not None and op_dist_attr.process_mesh != compatible_process_mesh ): op_dist_attr.process_mesh = compatible_process_mesh # Step 2: set the process meshes of ops with the nearest op before them # Step 2.1: find the first op node which has the process mesh idx_of_first_op_node_has_process_mesh = -1 for idx, op_node in enumerate(ordered_op_nodes): op_dist_attr = self._dist_context.get_dist_attr_for_graph(op_node) if ( op_dist_attr.process_mesh is not None and idx_of_first_op_node_has_process_mesh == -1 ): idx_of_first_op_node_has_process_mesh = idx # Reuse the following method to set the related tensors for same op node self._update_process_mesh_by_nearest(op_node, op_node) # Step 2.2: set the process meshes of ops by the nearest op node after the first op node if idx_of_first_op_node_has_process_mesh + 1 > len(ordered_op_nodes): return None for idx, op_node in enumerate( ordered_op_nodes[idx_of_first_op_node_has_process_mesh + 1 :] ): original_idx = idx_of_first_op_node_has_process_mesh + idx + 1 nearest_op_node = ordered_op_nodes[original_idx - 1] nearest_op_dist_attr = self._dist_context.get_dist_attr_for_graph( nearest_op_node ) op_dist_attr = self._dist_context.get_dist_attr_for_graph(op_node) assert nearest_op_dist_attr.process_mesh is not None self._update_process_mesh_by_nearest(op_node, nearest_op_node) # Step 2.3: set the process meshes of ops by the nearest op node before the first op node nearest_op_node = ordered_op_nodes[ idx_of_first_op_node_has_process_mesh ] for op_node in ordered_op_nodes[:idx_of_first_op_node_has_process_mesh]: self._update_process_mesh_by_nearest(op_node, nearest_op_node) # Step 3: adjust the process meshes for special ops self._update_process_mesh_for_specials() # Step 4: adjust the process meshes between graphs self._update_process_mesh_between_graphs() def _prepare(self): def _find_nearest_parent_nodes(sorted_parent_nodes, child_idx): before_node = None after_node = None pos = -1 for pos, (parent_idx, parent_node) in enumerate( sorted_parent_nodes ): if parent_idx > child_idx: after_node = parent_node break if pos > 0: _, before_node = sorted_parent_nodes[pos - 1] return before_node, after_node if self._has_prepared: return self._while_op_nodes = {} self._array_nodes = {} self._node_pairs_between_graphs = [] all_nodes = self._dist_context.serial_ordered_nodes for idx, node in enumerate(all_nodes): if node.is_op(): if node.op().type() == "while": self._while_op_nodes[_node_id(node)] = (node, idx) if node.op().type() == "read_from_array": array_var_name = node.op().input("X")[0] if self._array_nodes.get(array_var_name, None) is None: self._array_nodes[array_var_name] = [] self._array_nodes[array_var_name].append(node) # Add the array input node self._array_nodes[array_var_name].append(node.inputs[0]) if node.op().type() == "write_to_array": array_var_name = node.op().output("Out")[0] if self._array_nodes.get(array_var_name, None) is None: self._array_nodes[array_var_name] = [] self._array_nodes[array_var_name].append(node) self._array_nodes[array_var_name].append(node.outputs[0]) # TODO: Use dict and name as the key to store the nodes, # and use the id comparsion to deal with the before or after position if node.is_var() and node.var() is not None: if node.node.graph_id() != 0: parent_nodes = ( self._dist_context._tensor_nodes_with_same_name[ node.node.graph_id() - 1 ].get(node.var().name(), None) ) if parent_nodes is not None: sorted_parent_nodes = sorted( parent_nodes, key=lambda x: x[0] ) for _, parent_node in sorted_parent_nodes: self._node_pairs_between_graphs.append( (parent_node, node) ) self._has_prepared = True def complete_forward_annotation(self, serial_main_program=None): """Complete annotation for the partial annotated serial_main_program. Arguments: serial_main_program: partial annotated serial_main_program. Returns:e serial_main_program: completed annotated serial_main_program. """ if serial_main_program is None: serial_main_program = self._dist_context.serial_main_program else: self._dist_context._serial_main_program = serial_main_program start_time = time.time() # print("start time", start_time, flush=True) if not self._dist_context.data_parallel: self._dist_context.initialize(with_graph=True) # self._dist_context.validate_dist_attr_for_program() start_time = time.time() self._prepare() # print("completion-prepare: ", time.time() - start_time, flush=True) start_time = time.time() self._update_process_mesh() # print("completion-mesh: ", time.time() - start_time, flush=True) start_time = time.time() self._update_dims_mapping() # print("graph-dims: ", time.time() - start_time, flush=True) start_time = time.time() # Copy the corresponding distributed attribute from graph to serial_main_program self._dist_context.copy_dist_attr_from_graph_to_program() # print("completion-copy: ", time.time() - start_time, flush=True) else: self._dist_context.initialize(with_graph=False) # A fast and special completion for data parallel self._update_dist_attr_for_dp() # print_program_with_dist_attr(self._dist_context.serial_main_program, # self._dist_context) # NOTE:[HighOrderGrad] update vars and ops distributed attribute in high order gradient self._complete_high_order_grad_annotation(serial_main_program) # Do the validation check and amend some completion self._dist_context.amend_dist_attr_for_program() self._dist_context.validate_dist_attr_for_program() end_time = time.time() # print("end time", end_time, flush=True) # print("elapsed time", end_time - start_time, flush=True) return serial_main_program def _update_dist_attr_for_dp(self): # TODO: we must ensure the world process group contains all ranks ranks = get_world_process_group().ranks process_mesh = ProcessMesh(ranks) for ( dist_tensor ) in self._dist_context._dist_tensors_for_program.values(): serial_tensor = dist_tensor.serial_tensor tensor_dist_attr = dist_tensor.dist_attr tensor_dist_attr.process_mesh = process_mesh for dist_op in self._dist_context._dist_ops_for_program.values(): serial_op = dist_op.serial_op op_desc = serial_op.desc op_dist_attr = dist_op.dist_attr op_dist_attr.process_mesh = process_mesh original_op_dist_attr = copy.deepcopy(op_dist_attr) input_xshape_arg_names = [] if "XShape" in op_desc.input_names(): input_xshape_arg_names = op_desc.input("XShape") for arg_name in serial_op.input_arg_names: serial_tensor = dist_op.get_serial_input(arg_name) if not serial_tensor.is_parameter: if arg_name not in input_xshape_arg_names: old_dims_mapping = op_dist_attr.get_input_dims_mapping( arg_name ) if len(old_dims_mapping) > 0: new_dims_mapping = [0] + [ -1 for _ in range(len(old_dims_mapping) - 1) ] op_dist_attr.set_input_dims_mapping( arg_name, new_dims_mapping ) else: old_dims_mapping = op_dist_attr.get_input_dims_mapping( arg_name ) if len(old_dims_mapping) > 1: new_dims_mapping = [-1, 0] + [ -1 for _ in range(len(old_dims_mapping) - 2) ] op_dist_attr.set_input_dims_mapping( arg_name, new_dims_mapping ) # Set tensor's dims_mapping by the op's tensor_dist_attr = ( self._dist_context.get_tensor_dist_attr_for_program( serial_tensor ) ) tensor_dist_attr.dims_mapping = ( op_dist_attr.get_input_dims_mapping(arg_name) ) output_xshape_arg_names = [] if "XShape" in op_desc.output_names(): output_xshape_arg_names = op_desc.output("XShape") for arg_name in serial_op.output_arg_names: serial_tensor = dist_op.get_serial_output(arg_name) if not serial_tensor.is_parameter: if arg_name not in output_xshape_arg_names: old_dims_mapping = op_dist_attr.get_output_dims_mapping( arg_name ) if len(old_dims_mapping) > 0: new_dims_mapping = [0] + [ -1 for _ in range(len(old_dims_mapping) - 1) ] op_dist_attr.set_output_dims_mapping( arg_name, new_dims_mapping ) else: old_dims_mapping = op_dist_attr.get_output_dims_mapping( arg_name ) if len(old_dims_mapping) > 1: new_dims_mapping = [-1, 0] + [ -1 for _ in range(len(old_dims_mapping) - 2) ] op_dist_attr.set_output_dims_mapping( arg_name, new_dims_mapping ) # Set tensor's dims_mapping by the op's tensor_dist_attr = ( self._dist_context.get_tensor_dist_attr_for_program( serial_tensor ) ) tensor_dist_attr.dims_mapping = ( op_dist_attr.get_output_dims_mapping(arg_name) ) op_dist_impls = find_compatible_distributed_operator_impls( dist_op, partial=False ) if op_dist_impls is not None: not_compatible = True backup_op_dist_attr = copy.deepcopy(op_dist_attr) for op_dist_impl in op_dist_impls: op_dist_impl.update_dims_mapping(dist_op) if ( op_dist_impl.is_auto_compatible(dist_op) and dist_op.validate_dist_attr() ): op_dist_attr.impl_type = op_dist_impl.type op_dist_attr.impl_idx = op_dist_impl.idx not_compatible = False break else: dist_op.dist_attr = backup_op_dist_attr if not_compatible: dist_op.dist_attr = original_op_dist_attr else: dist_op.dist_attr = original_op_dist_attr def _complete_tensor_dist_attr_by_op(self, serial_main_program=None): if serial_main_program is None: serial_main_program = self._dist_context.serial_main_program else: self._dist_context._serial_main_program = serial_main_program self._dist_context.initialize() self._prepare() has_set_dist_attr = set() all_nodes = self._dist_context.serial_ordered_nodes for node in all_nodes: if node.is_op(): if node.op().type() in ["while"]: continue dist_op = self._dist_context.get_dist_op_for_graph(node) op_dist_attr = dist_op.dist_attr for tensor_node in node.inputs: if tensor_node.is_var() and tensor_node.var() is not None: # Skip the non-leaf var node if len(tensor_node.inputs) != 0: continue tensor_desc = tensor_node.var() tensor_name = tensor_desc.name() tensor = dist_op.get_serial_input(tensor_name) # Use the first op to set the tensor dist attr if tensor_name in has_set_dist_attr: continue tensor_dist_attr = ( self._dist_context.get_tensor_dist_attr_for_graph( tensor_node ) ) tensor_dist_attr.process_mesh = ( op_dist_attr.process_mesh ) tensor_dist_attr.dims_mapping = ( op_dist_attr.get_input_dims_mapping(tensor_name) if tensor.is_parameter else [-1 for i in tensor_desc.shape()] ) has_set_dist_attr.add(tensor_name) for tensor_node in node.outputs: if tensor_node.is_var() and tensor_node.var() is not None: tensor_name = tensor_node.var().name() if tensor_name in has_set_dist_attr: continue tensor_dist_attr = ( self._dist_context.get_tensor_dist_attr_for_graph( tensor_node ) ) tensor_dist_attr.process_mesh = ( op_dist_attr.process_mesh ) tensor_dist_attr.dims_mapping = ( op_dist_attr.get_output_dims_mapping(tensor_name) ) has_set_dist_attr.add(tensor_name) self._update_process_mesh_for_specials() self._update_process_mesh_between_graphs() self._update_dims_mapping_for_special() self._update_dims_mapping_between_graphs() # Copy the corresponding distributed attribute from graph to serial_main_program self._dist_context.copy_dist_attr_from_graph_to_program() # Do the validation check and amend some completion self._dist_context.amend_dist_attr_for_program() self._dist_context.validate_dist_attr_for_program() def _complete_high_order_grad_annotation(self, serial_main_program=None): """ NOTE: [HighOrderGrad] Complete the annotation of vars and ops only for high order gradient. This function is temporary to support high order gradient, and will be removed in the future. """ if serial_main_program is None: serial_main_program = self._dist_context.serial_main_program else: self._dist_context._serial_main_program = serial_main_program def _is_grad_var_name(name): if "@GRAD" in name: return True return False def _get_op_by_id(ops, id): for op in ops: if op.desc.original_id() == id: return op return None ops = list(serial_main_program.global_block().ops) vars = serial_main_program.global_block().vars dist_op_context = self._dist_context.dist_op_context grad_var_to_var = dist_op_context.grad_var_to_var appended_grad_times = 0 for idx in range(0, len(ops)): op = ops[idx] if int(op.attr('op_role')) == int( core.op_proto_and_checker_maker.OpRole.Forward ): continue if int(op.attr('op_role')) == int( core.op_proto_and_checker_maker.OpRole.Backward ) and int(ops[idx - 1].attr('op_role')) == int( core.op_proto_and_checker_maker.OpRole.Forward ): appended_grad_times += 1 if int(op.attr('op_role')) == int( int(core.op_proto_and_checker_maker.OpRole.Backward) | int(core.op_proto_and_checker_maker.OpRole.Loss) ): assert op.type == "fill_constant" break # complete the annotation of grad op (xxx_grad op or sum op) # xxx_grad op will have a corresponding forward op in grad_op_id_to_op_id grad_op = ops[idx] if ( grad_op.desc.original_id() in dist_op_context.grad_op_id_to_op_id ): # TODO support the case where one forward op corresponding to multiple xxx_grad op forward_op = _get_op_by_id( ops, dist_op_context.grad_op_id_to_op_id[ grad_op.desc.original_id() ], ) assert forward_op is not None fwd_op_dist_attr = ( self._dist_context.get_op_dist_attr_for_program(forward_op) ) fwd_op_process_mesh = fwd_op_dist_attr.process_mesh grad_op_dist_attr = OperatorDistributedAttribute() grad_op_dist_attr.process_mesh = fwd_op_process_mesh for input_name in grad_op.input_arg_names: if ( input_name not in forward_op.input_arg_names and input_name not in forward_op.output_arg_names ): if input_name in grad_var_to_var[appended_grad_times]: fwd_name = grad_var_to_var[appended_grad_times][ input_name ] ref_dims_mapping = ( fwd_op_dist_attr.get_output_dims_mapping( fwd_name ) ) else: input_var = vars[input_name] ref_dims_mapping = self._dist_context.get_tensor_dist_attr_for_program( input_var ).dims_mapping else: if fwd_op_dist_attr.get_input_dims_mapping(input_name): ref_dims_mapping = ( fwd_op_dist_attr.get_input_dims_mapping( input_name ) ) else: ref_dims_mapping = ( fwd_op_dist_attr.get_output_dims_mapping( input_name ) ) assert ( ref_dims_mapping is not None ), "[{}] 's dims mapping is NONE".format(input_name) grad_op_dist_attr.set_input_dims_mapping( input_name, ref_dims_mapping ) for output_name in grad_op.output_arg_names: assert output_name in grad_var_to_var[appended_grad_times] fwd_name = grad_var_to_var[appended_grad_times][output_name] ref_dims_mapping = fwd_op_dist_attr.get_input_dims_mapping( fwd_name ) # var output_var = vars[output_name] tensor_dist_attr = TensorDistributedAttribute() tensor_dist_attr.dims_mapping = ref_dims_mapping tensor_dist_attr.process_mesh = fwd_op_process_mesh self._dist_context.set_tensor_dist_attr_for_program( output_var, tensor_dist_attr ) # op grad_op_dist_attr.set_output_dims_mapping( output_name, ref_dims_mapping ) self._dist_context.set_op_dist_attr_for_program( grad_op, grad_op_dist_attr ) # grad ops that have not a corresponding mapping in grad_op_id_to_op_id else: if grad_op.type == 'sum': assert all(map(_is_grad_var_name, grad_op.input_arg_names)) output_name = grad_op.output_arg_names[0] assert ( output_name in grad_var_to_var[appended_grad_times] ), "sum op's output '{}' has no corresponding var".format( output_name ) ref_fwd_var_name = grad_var_to_var[appended_grad_times][ output_name ] ref_fwd_var = vars[ref_fwd_var_name] ref_fwd_dist_attr = ( self._dist_context.get_tensor_dist_attr_for_program( ref_fwd_var ) ) ref_fwd_dims_mapping = ref_fwd_dist_attr.dims_mapping ref_fwd_process_mesh = ref_fwd_dist_attr.process_mesh # output tensor_dist_attr = TensorDistributedAttribute() tensor_dist_attr.dims_mapping = ref_fwd_dims_mapping tensor_dist_attr.process_mesh = ref_fwd_process_mesh output_var = vars[output_name] self._dist_context.set_tensor_dist_attr_for_program( output_var, tensor_dist_attr ) # op grad_op_dist_attr = OperatorDistributedAttribute() grad_op_dist_attr.process_mesh = ref_fwd_process_mesh for var_name in grad_op.input_arg_names: grad_op_dist_attr.set_input_dims_mapping( var_name, ref_fwd_dims_mapping ) grad_op_dist_attr.set_output_dims_mapping( output_name, ref_fwd_dims_mapping ) elif grad_op.type == 'fill_any_like': ref_var_name = grad_op.input_arg_names[0] ref_var = vars[ref_var_name] ref_dist_attr = ( self._dist_context.get_tensor_dist_attr_for_program( ref_var ) ) ref_dims_mapping = ref_dist_attr.dims_mapping ref_process_mesh = ref_dist_attr.process_mesh # output tensor_dist_attr = TensorDistributedAttribute() tensor_dist_attr.dims_mapping = ref_dims_mapping tensor_dist_attr.process_mesh = ref_process_mesh output_var_name = grad_op.output_arg_names[0] output_var = vars[output_var_name] self._dist_context.set_tensor_dist_attr_for_program( output_var, tensor_dist_attr ) # op grad_op_dist_attr = OperatorDistributedAttribute() grad_op_dist_attr.process_mesh = ref_process_mesh grad_op_dist_attr.set_input_dims_mapping( ref_var_name, ref_dims_mapping ) grad_op_dist_attr.set_output_dims_mapping( output_var_name, ref_dims_mapping ) elif grad_op.type in ['shape', 'fill_constant']: continue else: raise ValueError( "got unexpect op [{}]".format(str(grad_op.type)) ) self._dist_context.set_op_dist_attr_for_program( grad_op, grad_op_dist_attr ) def complete_backward_annotation(self, serial_main_program=None): """Complete the annotation of vars and ops in the backward phase for parallel program.""" if serial_main_program is None: serial_main_program = self._dist_context.serial_main_program else: self._dist_context._serial_main_program = serial_main_program def _is_grad_var_name(name): if "@GRAD" in name: return True return False def _get_forward_varname_from_grad_varname(grad_var_name): assert _is_grad_var_name( grad_var_name ), "[{}] is not a grad varnme.".format(grad_var_name) return grad_var_name[: grad_var_name.find("@GRAD")] def _get_op_by_id(ops, id): for op in ops: if op.desc.original_id() == id: return op return None first_backward_op_idx = -1 for idx, op in enumerate(serial_main_program.global_block().ops): if int(op.attr('op_role')) == int( int(core.op_proto_and_checker_maker.OpRole.Backward) | int(core.op_proto_and_checker_maker.OpRole.Loss) ): assert op.type == "fill_constant" first_backward_op_idx = idx break assert ( first_backward_op_idx >= 0 ), "No backward procedure found in this program." ops = list(serial_main_program.global_block().ops) vars = serial_main_program.global_block().vars dist_op_context = self._dist_context.dist_op_context grad_var_to_var = dist_op_context.grad_var_to_var[ len(dist_op_context.grad_var_to_var) ] for idx in range(first_backward_op_idx, len(ops)): # complete the initial grad loss op if idx == first_backward_op_idx: assert ops[idx].type == "fill_constant" assert ( len(ops[idx].input_arg_names) == 0 ), "first backward op should has only ONE output, but got [{}]".format( len(ops[idx].input_arg_names) ) assert ( len(ops[idx].output_arg_names) == 1 ), "first backward op should has only ONE output, but got [{}]".format( len(ops[idx].output_arg_names) ) grad_var = vars[ops[idx].output_arg_names[0]] forward_var_name = _get_forward_varname_from_grad_varname( grad_var.name ) forward_var = vars[forward_var_name] # TODO complete other attribte for grad var tensor_dist_attr = TensorDistributedAttribute() process_mesh = ( self._dist_context.get_tensor_dist_attr_for_program( forward_var ).process_mesh ) dims_mapping = ( self._dist_context.get_tensor_dist_attr_for_program( forward_var ).dims_mapping ) tensor_dist_attr.dims_mapping = dims_mapping tensor_dist_attr.process_mesh = process_mesh self._dist_context.set_tensor_dist_attr_for_program( grad_var, tensor_dist_attr ) op_dist_attr = OperatorDistributedAttribute() op_dist_attr.process_mesh = process_mesh op_dist_attr.set_output_dims_mapping( grad_var.name, dims_mapping ) self._dist_context.set_op_dist_attr_for_program( ops[idx], op_dist_attr ) continue # complete the annotation of grad op (xxx_grad op or sum op) # xxx_grad op will have a corresponding forward op in grad_op_id_to_op_id grad_op = ops[idx] if ( grad_op.desc.original_id() in dist_op_context.grad_op_id_to_op_id ): # TODO support the case where one forward op corresponding to multiple xxx_grad op forward_op = _get_op_by_id( ops[:first_backward_op_idx], dist_op_context.grad_op_id_to_op_id[ grad_op.desc.original_id() ], ) assert forward_op is not None if grad_op.type == "concat" and forward_op.type == "split": forward_op_dist_attr = ( self._dist_context.get_op_dist_attr_for_program( forward_op ) ) output_var = vars[grad_op.desc.output('Out')[0]] split_input_var_name = forward_op.input("X")[0] ref_dims_mapping = ( forward_op_dist_attr.get_input_dims_mapping( split_input_var_name ) ) ref_mesh = forward_op_dist_attr.process_mesh grad_op_dist_attr = OperatorDistributedAttribute() for input_name in grad_op.input_arg_names: grad_op_dist_attr.set_input_dims_mapping( input_name, ref_dims_mapping ) output_var_dist_attr = TensorDistributedAttribute() output_var_dist_attr.dims_mapping = ref_dims_mapping output_var_dist_attr.process_mesh = ref_mesh self._dist_context.set_tensor_dist_attr_for_program( output_var, output_var_dist_attr ) grad_op_dist_attr.set_output_dims_mapping( output_var.name, ref_dims_mapping ) grad_op_dist_attr.process_mesh = ref_mesh self._dist_context.set_op_dist_attr_for_program( grad_op, grad_op_dist_attr ) grad_op_dist_attr.impl_type = fwd_op_dist_attr.impl_type grad_op_dist_attr.impl_idx = fwd_op_dist_attr.impl_idx continue fwd_op_dist_attr = ( self._dist_context.get_op_dist_attr_for_program(forward_op) ) fwd_op_process_mesh = fwd_op_dist_attr.process_mesh grad_op_dist_attr = OperatorDistributedAttribute() grad_op_dist_attr.process_mesh = fwd_op_process_mesh for input_name in grad_op.input_arg_names: if ( input_name not in forward_op.input_arg_names and input_name not in forward_op.output_arg_names ): if input_name in grad_var_to_var: fwd_name = grad_var_to_var[input_name] ref_dims_mapping = ( fwd_op_dist_attr.get_output_dims_mapping( fwd_name ) ) else: input_var = vars[input_name] ref_dims_mapping = self._dist_context.get_tensor_dist_attr_for_program( input_var ).dims_mapping else: if fwd_op_dist_attr.get_input_dims_mapping(input_name): ref_dims_mapping = ( fwd_op_dist_attr.get_input_dims_mapping( input_name ) ) else: ref_dims_mapping = ( fwd_op_dist_attr.get_output_dims_mapping( input_name ) ) assert ( ref_dims_mapping is not None ), "[{}] 's dims mapping is NONE".format(input_name) grad_op_dist_attr.set_input_dims_mapping( input_name, ref_dims_mapping ) for output_name in grad_op.output_arg_names: assert output_name in grad_var_to_var fwd_name = grad_var_to_var[output_name] ref_dims_mapping = fwd_op_dist_attr.get_input_dims_mapping( fwd_name ) # var output_var = vars[output_name] tensor_dist_attr = TensorDistributedAttribute() tensor_dist_attr.dims_mapping = ref_dims_mapping tensor_dist_attr.process_mesh = fwd_op_process_mesh self._dist_context.set_tensor_dist_attr_for_program( output_var, tensor_dist_attr ) # op grad_op_dist_attr.set_output_dims_mapping( output_name, ref_dims_mapping ) grad_op_dist_attr.impl_type = fwd_op_dist_attr.impl_type grad_op_dist_attr.impl_idx = fwd_op_dist_attr.impl_idx self._dist_context.set_op_dist_attr_for_program( grad_op, grad_op_dist_attr ) # grad ops that have not a corresponding mapping in grad_op_id_to_op_id else: if grad_op.type == 'sum': assert all(map(_is_grad_var_name, grad_op.input_arg_names)) output_name = grad_op.output_arg_names[0] assert ( output_name in grad_var_to_var ), "sum op's output '{}' has no corresponding var".format( output_name ) ref_fwd_var_name = grad_var_to_var[output_name] ref_fwd_var = vars[ref_fwd_var_name] ref_fwd_dist_attr = ( self._dist_context.get_tensor_dist_attr_for_program( ref_fwd_var ) ) ref_fwd_dims_mapping = ref_fwd_dist_attr.dims_mapping ref_fwd_process_mesh = ref_fwd_dist_attr.process_mesh # output tensor_dist_attr = TensorDistributedAttribute() tensor_dist_attr.dims_mapping = ref_fwd_dims_mapping tensor_dist_attr.process_mesh = ref_fwd_process_mesh output_var = vars[output_name] self._dist_context.set_tensor_dist_attr_for_program( output_var, tensor_dist_attr ) # op grad_op_dist_attr = OperatorDistributedAttribute() grad_op_dist_attr.process_mesh = ref_fwd_process_mesh for var_name in grad_op.input_arg_names: grad_op_dist_attr.set_input_dims_mapping( var_name, ref_fwd_dims_mapping ) grad_op_dist_attr.set_output_dims_mapping( output_name, ref_fwd_dims_mapping ) grad_op_dist_attr.impl_type = "default" grad_op_dist_attr.impl_idx = 0 elif grad_op.type == 'fill_any_like': ref_var_name = grad_op.input_arg_names[0] ref_var = vars[ref_var_name] ref_dist_attr = ( self._dist_context.get_tensor_dist_attr_for_program( ref_var ) ) ref_dims_mapping = ref_dist_attr.dims_mapping ref_process_mesh = ref_dist_attr.process_mesh # output tensor_dist_attr = TensorDistributedAttribute() tensor_dist_attr.dims_mapping = ref_dims_mapping tensor_dist_attr.process_mesh = ref_process_mesh output_var_name = grad_op.output_arg_names[0] output_var = vars[output_var_name] self._dist_context.set_tensor_dist_attr_for_program( output_var, tensor_dist_attr ) # op grad_op_dist_attr = OperatorDistributedAttribute() grad_op_dist_attr.process_mesh = ref_process_mesh grad_op_dist_attr.set_input_dims_mapping( ref_var_name, ref_dims_mapping ) grad_op_dist_attr.set_output_dims_mapping( output_var_name, ref_dims_mapping ) else: raise ValueError( "got unexpect op [{}]".format(str(grad_op.type)) ) self._dist_context.set_op_dist_attr_for_program( grad_op, grad_op_dist_attr ) def complete_update_annotation(self, serial_main_program): """Complete the annotation of vars and ops in the update phase for parallel program.""" # Copy the dist tensors and dist ops annotated by users from the default context # global mesh from paddle.distributed.auto_parallel.process_group import ( get_world_process_group, ) world_ranks = get_world_process_group().ranks # Notice: serial_main_program is actually a dist_main_program of current rank, # and must be passed into this function. # TODO: We should fix this behavior. ops = list(serial_main_program.global_block().ops) vars = serial_main_program.global_block().vars learning_rate_completed = False for idx in range(len(ops)): # complete the annotation of the optimizer op. # TODO to add attribute for moment var op = ops[idx] if int(op.attr('op_role')) == int(OpRole.Optimize): if is_gradient_clip_op(op): if op.type in [ "sum", "sqrt", "fill_constant", "elementwise_max", "elementwise_div", ]: op_dist_attr = OperatorDistributedAttribute() op_dist_attr.process_mesh = world_ranks for in_name in op.input_arg_names: in_var = vars[in_name] in_dist_attr = self._dist_context.get_tensor_dist_attr_for_program( in_var ) op_dist_attr.set_input_dist_attr( in_name, in_dist_attr ) for out_name in op.output_arg_names: out_var = vars[out_name] out_dist_attr = TensorDistributedAttribute() out_dist_attr.process_mesh = world_ranks out_dist_attr.dims_mapping = [ -1 for _ in range(len(out_var.shape)) ] self._dist_context.set_tensor_dist_attr_for_program( out_var, out_dist_attr ) op_dist_attr.set_output_dist_attr( out_name, out_dist_attr ) else: in_var = vars[op.input("X")[0]] in_dist_attr = ( self._dist_context.get_tensor_dist_attr_for_program( in_var ) ) assert in_dist_attr is not None ref_process_mesh = in_dist_attr.process_mesh ref_dims_mapping = in_dist_attr.dims_mapping if ( op.type == "cast" and ops[idx + 1].type == "elementwise_mul" ): ref_var = vars[ops[idx + 1].input("X")[0]] ref_dist_attr = self._dist_context.get_tensor_dist_attr_for_program( ref_var ) assert ref_dist_attr is not None ref_process_mesh = ref_dist_attr.process_mesh out_var = vars[op.output("Out")[0]] out_dist_attr = TensorDistributedAttribute() out_dist_attr.process_mesh = ref_process_mesh if out_var.shape == in_var.shape: out_dist_attr.dims_mapping = ref_dims_mapping else: assert ( len(out_var.shape) == 1 and out_var.shape[0] == 1 ) out_dist_attr.dims_mapping = [-1] self._dist_context.set_tensor_dist_attr_for_program( out_var, out_dist_attr ) op_dist_attr = OperatorDistributedAttribute() op_dist_attr.process_mesh = ref_process_mesh op_dist_attr.set_input_dist_attr( in_var.name, in_dist_attr ) op_dist_attr.set_output_dist_attr( out_var.name, out_dist_attr ) self._dist_context.set_op_dist_attr_for_program( op, op_dist_attr ) if "Grad" in op.input_names and "Param" in ops[idx].input_names: assert ( len(op.input("Param")) == 1 ), "Only support one-to-one now." assert ( len(op.input("Grad")) == 1 ), "Only support one-to-one now." param = vars[op.input("Param")[0]] grad_var = vars[op.input("Grad")[0]] param_dist_attr = ( self._dist_context.get_tensor_dist_attr_for_program( param ) ) assert param_dist_attr is not None ref_process_mesh = ( self._dist_context.get_tensor_dist_attr_for_program( param ).process_mesh ) assert ref_process_mesh is not None ref_dims_mapping = ( self._dist_context.get_tensor_dist_attr_for_program( param ).dims_mapping ) assert ref_dims_mapping is not None op_dist_attr = OperatorDistributedAttribute() op_dist_attr.process_mesh = ref_process_mesh op_dist_attr.set_input_dims_mapping( grad_var.name, ref_dims_mapping ) op_dist_attr.set_input_dims_mapping( param.name, ref_dims_mapping ) op_dist_attr.set_output_dims_mapping( param.name, ref_dims_mapping ) learning_var = vars[op.input("LearningRate")[0]] op_dist_attr.set_input_dims_mapping(learning_var.name, [-1]) op_dist_attr.set_output_dims_mapping( learning_var.name, [-1] ) if not learning_rate_completed: learning_rate_completed = True var_dist_attr = TensorDistributedAttribute() var_dist_attr.process_mesh = world_ranks var_dist_attr.dims_mapping = [-1] self._dist_context.set_tensor_dist_attr_for_program( learning_var, var_dist_attr ) for input_name in op.desc.input_names(): if input_name in [ 'Param', 'Grad', 'LearningRate', "SkipUpdate", "Beta1Tensor", "Beta2Tensor", "EpsilonTensor", ]: continue if len(op.desc.input(input_name)) == 0: continue assert len(op.desc.input(input_name)) == 1 input_var = vars[op.desc.input(input_name)[0]] input_var_attr = TensorDistributedAttribute() if "Beta1Pow" in input_name or "Beta2Pow" in input_name: input_var_attr.dims_mapping = [-1] op_dist_attr.set_input_dims_mapping( input_var.name, [-1] ) op_dist_attr.set_output_dims_mapping( input_var.name, [-1] ) else: input_var_attr.dims_mapping = ref_dims_mapping op_dist_attr.set_input_dims_mapping( input_var.name, ref_dims_mapping ) op_dist_attr.set_output_dims_mapping( input_var.name, ref_dims_mapping ) input_var_attr.process_mesh = ref_process_mesh self._dist_context.set_tensor_dist_attr_for_program( input_var, input_var_attr ) self._dist_context.set_op_dist_attr_for_program( op, op_dist_attr ) continue def complete_prim_annotation(self, serial_main_program=None): """ fill default data parallel annotation for program with primitive operators. Arguments: serial_main_program: partial annotated serial_main_program. Returns: serial_main_program: completed annotated serial_main_program. """ if serial_main_program is None: serial_main_program = self._dist_context.serial_main_program else: self._dist_context._serial_main_program = serial_main_program import time start_time = time.time() self._dist_context._is_initialized = True start_time = time.time() self._dist_context._init_dist_attr_for_program() start_time = time.time() self._init_global_mesh_for_program() # Do the validation check and amend some completion start_time = time.time() self._dist_context.amend_dist_attr_for_program() self._dist_context.validate_dist_attr_for_program() def _init_global_mesh_for_program(self): # Copy the dist tensors and dist ops annotated by users from the default context # global mesh from paddle.distributed.auto_parallel.process_group import ( get_world_process_group, ) world_ranks = get_world_process_group().ranks for block in self._dist_context._serial_main_program.blocks: for tensor in block.vars.values(): # Copy the distributed tensors in the default context dist_tensor = self._dist_context.get_dist_tensor_for_program( tensor ) assert dist_tensor is not None dist_tensor.dist_attr.process_mesh = world_ranks for op in block.ops: # Copy the distributed operators in the default context dist_op = self._dist_context.get_dist_op_for_program(op) assert dist_op is not None dist_op.dist_attr.process_mesh = world_ranks # Find the most compatible implemenetations from the distributed operator op_dist_impls = find_compatible_distributed_operator_impls( dist_op, fwd=True ) if op_dist_impls is not None: backup_op_dist_attr = copy.deepcopy(dist_op.dist_attr) for op_dist_impl in op_dist_impls: dim_changed = op_dist_impl.update_dims_mapping(dist_op) if op_dist_impl.is_auto_compatible(dist_op): if op_dist_impl.type == "elementwise": dist_op.dist_attr.impl_type = "default" else: dist_op.dist_attr.impl_type = op_dist_impl.type # op_dist_attr.impl_type = op_dist_impl.type dist_op.dist_attr.impl_idx = op_dist_impl.idx break else: dist_op.dist_attr = backup_op_dist_attr