/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); You may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "paddle/operators/math/math_function.h" #include "paddle/framework/eigen.h" #include "paddle/framework/op_registry.h" #include "paddle/operators/math/im2col.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; using LoDTensor = framework::LoDTensor; inline int get_output_size(int img_size, int block_size, int stride, int padding) { return (1 + (img_size + 2 * padding - block_size + stride - 1) / stride); } template class BlockExpandKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { const Tensor* in = ctx.Input("X"); LoDTensor* out = ctx.Output("Out"); out->mutable_data(ctx.GetPlace()); auto in_dim = in->dims(); int batch_size = in_dim[0]; int img_channels = in_dim[1]; int img_height = in_dim[2]; int img_width = in_dim[3]; int block_height = ctx.Attr("block_height"); int block_width = ctx.Attr("block_width"); int stride_height = ctx.Attr("stride_height"); int stride_width = ctx.Attr("stride_width"); int padding_height = ctx.Attr("padding_height"); int padding_width = ctx.Attr("padding_width"); int output_height = get_output_size(img_height, block_height, stride_height, padding_height); int output_width = get_output_size(img_width, block_width, stride_width, padding_width); const std::vector dilations({1, 1}); const std::vector strides( {stride_height, stride_width, stride_height, stride_width}); const std::vector paddings( {padding_height, padding_width, padding_height, padding_width}); auto out_dims = out->dims(); out->Resize({batch_size, out->numel() / batch_size}); for (int i = 0; i < batch_size; i++) { const Tensor src = in->Slice(i, i + 1).Resize({img_channels, img_height, img_width}); Tensor dst = out->Slice(i, i + 1).Resize({output_height, output_width, img_channels, block_height, block_width}); math::Im2ColFunctor f; f(ctx.device_context(), src, dilations, strides, paddings, &dst); } out->Resize(out_dims); // set lod information // TODO(wanghaoshuang): Move this to InferShape framework::LoD lod(1); for (int i = 0, offset = 0; i < batch_size + 1; ++i) { lod[0].push_back(offset); offset += output_height * output_width; } out->set_lod(lod); } }; template class BlockExpandGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* in = ctx.Input("X"); Tensor* d_out = const_cast(ctx.Input(framework::GradVarName("Out"))); auto* d_x = ctx.Output(framework::GradVarName("X")); d_x->mutable_data(ctx.GetPlace()); auto x_v = framework::EigenVector::Flatten(*d_x); x_v.device(ctx.GetEigenDevice()) = x_v.constant(0.0); auto in_dim = in->dims(); int batch_size = in_dim[0]; int img_channels = in_dim[1]; int img_height = in_dim[2]; int img_width = in_dim[3]; int block_height = ctx.Attr("block_height"); int block_width = ctx.Attr("block_width"); int stride_height = ctx.Attr("stride_height"); int stride_width = ctx.Attr("stride_width"); int padding_height = ctx.Attr("padding_height"); int padding_width = ctx.Attr("padding_width"); int output_height = get_output_size(img_height, block_height, stride_height, padding_height); int output_width = get_output_size(img_width, block_width, stride_width, padding_width); const std::vector dilations({1, 1}); const std::vector strides( {stride_height, stride_width, stride_height, stride_width}); const std::vector paddings( {padding_height, padding_width, padding_height, padding_width}); auto d_out_dims = d_out->dims(); d_out->Resize({batch_size, d_out->numel() / batch_size}); for (int i = 0; i < batch_size; i++) { Tensor dst = d_x->Slice(i, i + 1).Resize({img_channels, img_height, img_width}); const Tensor src = d_out->Slice(i, i + 1).Resize( {output_height, output_width, img_channels, block_height, block_width}); math::Col2ImFunctor f; f(ctx.device_context(), src, dilations, strides, paddings, &dst); } d_out->Resize(d_out_dims); } }; } // namespace operators } // namespace paddle