// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/p_norm_grad_kernel.h" #include "paddle/phi/backends/cpu/cpu_context.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/funcs/eigen/common.h" #include "paddle/phi/kernels/funcs/eigen/eigen_function.h" #include "paddle/phi/kernels/funcs/math_function.h" namespace phi { inline void GetDims(const phi::DDim& dim, int axis, int* pre, int* n, int* post, bool asvector) { *pre = 1; *post = 1; *n = dim[axis]; if (asvector) { *n = product(dim); } else { for (int i = 0; i < axis; ++i) { (*pre) *= dim[i]; } for (int i = axis + 1; i < dim.size(); ++i) { (*post) *= dim[i]; } } } template void PNormGradKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& out, const DenseTensor& out_grad, float porder, int axis, float epsilon, bool keepdim, bool asvector, DenseTensor* x_grad) { auto* in_x = &x; auto* in_norm = &out; auto* in_norm_dy = &out_grad; auto* out_dx = x_grad; dev_ctx.template Alloc(out_dx); T eps = static_cast(epsilon); auto xdim = in_x->dims(); if (axis < 0) axis = xdim.size() + axis; int pre, n, post; GetDims(xdim, axis, &pre, &n, &post, asvector); Eigen::DSizes shape(pre, n, post); Eigen::DSizes rshape(pre, 1, post); auto* place = dev_ctx.eigen_device(); auto x_e = phi::EigenVector::Flatten(*in_x); auto dx_e = phi::EigenVector::Flatten(*out_dx); auto norm_e = phi::EigenVector::Flatten(*in_norm); auto norm_dy_e = phi::EigenVector::Flatten(*in_norm_dy); auto xr = x_e.reshape(shape); auto dx = dx_e.reshape(shape); auto norm = norm_e.reshape(rshape); auto norm_dy = norm_dy_e.reshape(rshape); Eigen::DSizes rdim(1); Eigen::DSizes bcast(1, n, 1); if (porder == 0) { phi::funcs::SetConstant set_zero; set_zero(dev_ctx, out_dx, static_cast(0)); } else if (porder == INFINITY || porder == -INFINITY) { dx.device(*place) = (xr.abs() == norm.broadcast(bcast)).template cast() * xr.sign() * norm_dy.broadcast(bcast); } else { dx.device(*place) = (xr.abs()).pow(porder - 1.0f) / ((norm.broadcast(bcast)).pow(porder - 1.0f) + xr.constant(eps)); dx.device(*place) = dx * norm_dy.broadcast(bcast) * xr.sign(); } } } // namespace phi PD_REGISTER_KERNEL( p_norm_grad, CPU, ALL_LAYOUT, phi::PNormGradKernel, float, double) {}