/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include #include #include #include #include #include "google/protobuf/message.h" #include "google/protobuf/text_format.h" #include "google/protobuf/io/zero_copy_stream_impl.h" #include "gflags/gflags.h" #include "paddle/fluid/framework/feed_fetch_method.h" #include "paddle/fluid/framework/feed_fetch_type.h" #include "paddle/fluid/framework/lod_rank_table.h" #include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/reader.h" #include "paddle/fluid/platform/place.h" #include "paddle/fluid/platform/profiler.h" #include "paddle/fluid/framework/data_feed.h" namespace paddle { namespace framework { std::vector DataFeed::filelist_; size_t DataFeed::file_idx_; std::mutex DataFeed::mutex_for_pick_file_; void DataFeed::AddFeedVar(Variable* var, const std::string& name) { if (CheckInit() == false) {return;} for (size_t i = 0; i < use_slots_.size(); ++i) { if (name == use_slots_[i]) { if (use_slots_is_dense_[i]) { feed_vec_[i] = MixTensor(var->GetMutable()); } else { feed_vec_[i] = MixTensor(var->GetMutable()); } } } } bool DataFeed::SetFileList(const std::vector& files) { if (CheckInit() == false) {return false;} if (files.size() == 0) { LOG(ERROR) << "error: you have set an empty filelist"; return false; } filelist_.assign(files.begin(), files.end()); file_idx_ = 0; finish_set_filelist_ = true; return true; } bool DataFeed::PickOneFile(std::string& filename) { std::unique_lock lock(mutex_for_pick_file_); if (file_idx_ == filelist_.size()) { return false; } filename = filelist_[file_idx_++]; return true; } bool DataFeed::CheckInit() { if (finish_init_) {return true;} LOG(ERROR) << "error: initialization did not succeed"; return false; } bool DataFeed::CheckSetFileList() { if (finish_set_filelist_) {return true;} LOG(ERROR) << "error: set filelist did not succeed"; return false; } bool DataFeed::CheckStart() { if (finish_start_) {return true;} LOG(ERROR) << "error: Datafeed has not started running yet"; return false; } template void PrivateQueueDataFeed::SetQueueSize(int queue_size) { if (!CheckInit()) {return;} if (queue_size <= 0) { LOG(ERROR) << "error: illegal queue size: " << queue_size; return; } queue_size_ = queue_size; queue_.ReCap(queue_size_); } template bool PrivateQueueDataFeed::Start() { if (!(CheckSetFileList())) {return false;} read_thread_ = std::thread(&PrivateQueueDataFeed::ReadThread, this); read_thread_.detach(); finish_start_ = true; return true; } template void PrivateQueueDataFeed::ReadThread(){ std::string filename; while (PickOneFile(filename)) { file_.open(filename.c_str()); // is_text_feed if (!file_.is_open()) { LOG(ERROR) << "error: open file<" << filename << "> fail"; } T instance; while (ParseOneInstance(instance)) { queue_.Send(instance); } file_.close(); } queue_.Close(); } template bool PrivateQueueDataFeed::Next(){ if (!CheckStart()) {return false;} int index = 0; T instance; T ins_vec(use_slots_.size()); while (index < default_batch_size_) { if (!queue_.Receive(&instance)) { break; } AddInstanceToInsVec(ins_vec, instance, index++); } batch_size_ = index; PutToFeedVec(ins_vec); return batch_size_ != 0; } void MultiSlotDataFeed::Init(paddle::DataFeedDesc& data_feed_desc) { finish_init_ = false; finish_set_filelist_ = false; finish_start_ = false; if (!data_feed_desc.has_multi_slot_desc()){ LOG(ERROR) << "error: multi_slot_desc has not been set"; return ; } paddle::MultiSlotDesc multi_slot_desc = data_feed_desc.multi_slot_desc(); size_t all_slot_num = multi_slot_desc.slots_size(); all_slots_.resize(all_slot_num); all_slots_type_.resize(all_slot_num); use_slots_index_.resize(all_slot_num); use_slots_.clear(); use_slots_is_dense_.clear(); for (size_t i = 0; i < all_slot_num; ++i) { auto& slot = multi_slot_desc.slots(i); all_slots_[i] = slot.name(); all_slots_type_[i] = slot.type(); use_slots_index_[i] = slot.use() ? use_slots_.size() : -1; if (slot.use()) { use_slots_.push_back(all_slots_[i]); use_slots_is_dense_.push_back(slot.dense()); } } feed_vec_.resize(use_slots_.size()); finish_init_ = true; } bool MultiSlotDataFeed::ParseOneInstance(std::vector& instance) { std::string line; if (getline(file_, line)) { int use_slots_num = use_slots_.size(); instance.resize(use_slots_num); //parse line const char* str = line.c_str(); char* endptr = (char*)str; int pos = 0; for (size_t i = 0; i < use_slots_index_.size(); ++i) { int idx = use_slots_index_[i]; int num = (int)strtol(&str[pos], &endptr, 10); if (num == 0) { LOG(ERROR) << "error: the number of ids can not be zero, you need padding it"; exit(-1); } if (idx != -1) { instance[idx].SetType(all_slots_type_[i]); if (instance[idx].GetType()[0] == 'f') { // float for (int j = 0; j < num; ++j) { float feasign = (float)strtof(endptr, &endptr); instance[idx].AddValue(feasign); } } else if (instance[idx].GetType()[0] == 'u'){ // uint64 for (int j = 0; j < num; ++j) { uint64_t feasign = (uint64_t)strtoull(endptr, &endptr, 10); instance[idx].AddValue(feasign); } } pos = endptr - str; } else { for (int j = 0; j <= num; ++j) { pos = line.find_first_of(' ', pos + 1); } } } } else { return false; } return true; } void MultiSlotDataFeed::AddInstanceToInsVec(std::vector& ins_vec, std::vector& instance, int index) { if (index == 0) { for (size_t i = 0; i < instance.size(); ++i) { ins_vec[i].SetType(instance[i].GetType()); } } for (size_t i = 0; i < instance.size(); ++i){ ins_vec[i].AddIns(instance[i]); } } void MultiSlotDataFeed::PutToFeedVec(std::vector& ins_vec) { for (size_t i = 0; i < use_slots_.size(); ++i) { auto& type = ins_vec[i].GetType(); auto& offset = ins_vec[i].GetOffset(); int total_instance = static_cast(offset.back()); if (type[0] == 'f') { // float auto& feasign = ins_vec[i].GetFloatData(); if (feed_vec_[i].IsDense()) { int size_in_each_batch = total_instance / batch_size_; float* tensor_ptr = feed_vec_[i].GetTensor()-> mutable_data({batch_size_, size_in_each_batch}, platform::CPUPlace()); memcpy(tensor_ptr, &feasign[0], total_instance * sizeof(float)); } else { float* tensor_ptr = feed_vec_[i].GetLoDTensor()-> mutable_data({total_instance, 1}, platform::CPUPlace()); memcpy(tensor_ptr, &feasign[0], total_instance * sizeof(float)); LoD data_lod{offset}; feed_vec_[i].GetLoDTensor()->set_lod(data_lod); } } else if (type[0] == 'u') { // uint64 // no uint64_t type auto& feasign = ins_vec[i].GetUint64Data(); if (feed_vec_[i].IsDense()) { int size_in_each_batch = total_instance / batch_size_; int64_t* tensor_ptr = feed_vec_[i].GetTensor()-> mutable_data({batch_size_, size_in_each_batch}, platform::CPUPlace()); memcpy(tensor_ptr, &feasign[0], total_instance * sizeof(int64_t)); } else { int64_t* tensor_ptr = feed_vec_[i].GetLoDTensor()-> mutable_data({total_instance, 1}, platform::CPUPlace()); memcpy(tensor_ptr, &feasign[0], total_instance * sizeof(uint64_t)); LoD data_lod{offset}; feed_vec_[i].GetLoDTensor()->set_lod(data_lod); } } } } } // namespace framework } // namespace paddle /* vim: set expandtab ts=2 sw=2 sts=2 tw=100: */