# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import random import numpy as np import os import shutil import paddle import paddle.nn as nn import paddle.utils as utils import paddle.static as static import paddle.nn.functional as F import paddle.distributed.auto_parallel as auto from paddle.distributed import fleet from paddle.fluid.initializer import NumpyArrayInitializer from paddle.distributed.auto_parallel.utils import save_distributed_checkpoint, load_distributed_checkpoint, load_checkpoint_into_program from paddle.distributed.auto_parallel.utils import get_dist_attr, merge_and_slice_parameter, load_parameter_into_program from paddle.distributed.auto_parallel.dist_context import set_default_distributed_context paddle.enable_static() _global_parallel_strategy = None _global_process_mesh = None PP_MESH_0 = None PP_MESH_1 = None class MLPLayer(nn.Layer): def __init__(self, hidden_size=64, intermediate_size=4 * 64, initializer_range=0.02): super(MLPLayer, self).__init__() d_model = hidden_size dim_feedforward = intermediate_size np.random.seed(2021) arr0 = np.random.normal(0, 0.02, size=(d_model, dim_feedforward)) arr1 = np.random.normal(0, 0.02, size=(d_model, dim_feedforward)) weight_attr0 = paddle.ParamAttr(initializer=NumpyArrayInitializer(arr0)) weight_attr1 = paddle.ParamAttr(initializer=NumpyArrayInitializer(arr1)) bias_attr = None self.linear0 = nn.Linear( d_model, dim_feedforward, weight_attr0, bias_attr=bias_attr) self.linear1 = nn.Linear( dim_feedforward, d_model, weight_attr1, bias_attr=bias_attr) self.norm = nn.LayerNorm(d_model, epsilon=1e-5) def forward(self, input): if _global_parallel_strategy == "pp": auto.shard_tensor( self.linear0.weight, dist_attr={ "process_mesh": PP_MESH_0, "dims_mapping": [-1, -1] }) auto.shard_tensor( self.linear1.weight, dist_attr={ "process_mesh": PP_MESH_1, "dims_mapping": [-1, -1] }) elif _global_parallel_strategy == "mp": auto.shard_tensor( self.linear0.weight, dist_attr={ "process_mesh": _global_process_mesh, "dims_mapping": [-1, 0] }) auto.shard_tensor( self.linear1.weight, dist_attr={ "process_mesh": _global_process_mesh, "dims_mapping": [0, -1] }) elif _global_parallel_strategy == "dp": auto.shard_tensor( self.linear0.weight, dist_attr={ "process_mesh": _global_process_mesh, "dims_mapping": [-1, -1] }) auto.shard_tensor( self.linear1.weight, dist_attr={ "process_mesh": _global_process_mesh, "dims_mapping": [-1, -1] }) out = self.norm(input) out = self.linear0(out) out = F.gelu(out, approximate=True) out = self.linear1(out) return out def mlp_forward(train_program, start_program): with static.program_guard(train_program,start_program), \ utils.unique_name.guard(): batch_size = 4 hidden_size = 64 input = static.data( name="input", shape=[batch_size, hidden_size], dtype='float32') label = static.data( name="label", shape=[batch_size, 1], dtype='float32') if _global_parallel_strategy == "pp": auto.shard_tensor( input, dist_attr={ "process_mesh": PP_MESH_0, "dims_mapping": [-1, -1] }) auto.shard_tensor( label, dist_attr={ "process_mesh": PP_MESH_1, "dims_mapping": [-1, -1] }) elif _global_parallel_strategy == "dp": auto.shard_tensor( input, dist_attr={ "process_mesh": _global_process_mesh, "dims_mapping": [0, -1] }) elif _global_parallel_strategy == "mp": auto.shard_tensor( input, dist_attr={ "process_mesh": _global_process_mesh, "dims_mapping": [-1, -1] }) mlp = MLPLayer( hidden_size=hidden_size, intermediate_size=4 * hidden_size, initializer_range=0.02) predict = mlp(input) error_cost = paddle.nn.functional.square_error_cost(predict, label) loss = paddle.mean(error_cost) return loss, train_program, start_program def get_distributed_program(): train_program = static.Program() startup_program = static.Program() dist_strategy = fleet.DistributedStrategy() dist_strategy.semi_auto = True fleet.init(is_collective=True, strategy=dist_strategy) loss, train_program, startup_program = mlp_forward(train_program, startup_program) optimizer = paddle.fluid.optimizer.SGDOptimizer(learning_rate=0.01) optimizer = fleet.distributed_optimizer(optimizer) _, _, dist_startup_prog, dist_main_prog = optimizer.minimize( loss, startup_program) return dist_main_prog, dist_startup_prog, loss class TestMLPAutoConvert(unittest.TestCase): def setUp(self): paddle.seed(2021) random.seed(2021) np.random.seed(2021) def tearDown(self): os.remove("./model_state_rank{}.pdmodel".format( str(paddle.distributed.get_rank()))) os.remove("./dist_attr_rank{}.pdattr".format( str(paddle.distributed.get_rank()))) def test_mlp_mp2pp(self): set_default_distributed_context(None) global _global_parallel_strategy _global_parallel_strategy = "mp" global _global_process_mesh _global_process_mesh = auto.ProcessMesh([0, 1]) input = np.random.random(size=(80, 64)).astype('float32') label = np.random.random(size=(80, 1)).astype('float32') dist_main_prog, dist_start_prog, loss = get_distributed_program() place = paddle.set_device("gpu") exe = paddle.static.Executor(place) exe.run(dist_start_prog) for step in range(20): if step == 10: save_distributed_checkpoint( dist_main_prog, ".", dist_attr_path=".") res = exe.run(dist_main_prog, feed={ "input": input[step * 4:(step + 1) * 4, :], "label": label[step * 4:(step + 1) * 4, :] }, fetch_list=[loss]) last_res = res[0] set_default_distributed_context(None) _global_parallel_strategy = "pp" _global_process_mesh = auto.ProcessMesh([0, 1]) global PP_MESH_0 PP_MESH_0 = auto.ProcessMesh(mesh=[0]) global PP_MESH_1 PP_MESH_1 = auto.ProcessMesh(mesh=[1]) dist_main_prog_load, dist_start_prog_load, loss_load = get_distributed_program( ) place = paddle.set_device("gpu") exe = paddle.static.Executor(place) exe.run(dist_start_prog_load) ckpt_path = [ "./model_state_rank0.pdmodel", "./model_state_rank1.pdmodel" ] dist_attr_path = [ "./dist_attr_rank0.pdattr", "./dist_attr_rank1.pdattr" ] load_checkpoint_into_program(ckpt_path, dist_attr_path, dist_main_prog_load) for step in range(10, 20): if paddle.distributed.get_rank() in [0]: res = exe.run(dist_main_prog_load, feed={ "input": input[step * 4:(step + 1) * 4, :], "label": label[step * 4:(step + 1) * 4, :] }) else: res = exe.run(dist_main_prog_load, feed={ "input": input[step * 4:(step + 1) * 4, :], "label": label[step * 4:(step + 1) * 4, :] }, fetch_list=[loss_load]) if paddle.distributed.get_rank() in [1]: self.assertEqual(last_res, res[0]) class TestMLPAutoConvert2(unittest.TestCase): def setUp(self): paddle.seed(2021) random.seed(2021) np.random.seed(2021) def tearDown(self): os.remove("./model_state_rank{}.pdmodel".format( str(paddle.distributed.get_rank()))) os.remove("./dist_attr_rank{}.pdattr".format( str(paddle.distributed.get_rank()))) def test_mlp_pp2mp(self): set_default_distributed_context(None) global _global_parallel_strategy _global_parallel_strategy = "pp" global _global_process_mesh _global_process_mesh = auto.ProcessMesh([0, 1]) global PP_MESH_0 PP_MESH_0 = auto.ProcessMesh(mesh=[0]) global PP_MESH_1 PP_MESH_1 = auto.ProcessMesh(mesh=[1]) input = np.random.random(size=(80, 64)).astype('float32') label = np.random.random(size=(80, 1)).astype('float32') dist_main_prog, dist_start_prog, loss = get_distributed_program() place = paddle.set_device("gpu") exe = paddle.static.Executor(place) exe.run(dist_start_prog) for step in range(20): if step == 10: add_info = {"batch": step, "batch_size": 4} save_distributed_checkpoint(dist_main_prog, ".", ".", add_info) if paddle.distributed.get_rank() in [0]: res = exe.run(dist_main_prog, feed={ "input": input[step * 4:(step + 1) * 4, :], "label": label[step * 4:(step + 1) * 4, :] }) else: res = exe.run(dist_main_prog, feed={ "input": input[step * 4:(step + 1) * 4, :], "label": label[step * 4:(step + 1) * 4, :] }, fetch_list=[loss]) if paddle.distributed.get_rank() in [1]: last_res = res[0] set_default_distributed_context(None) _global_parallel_strategy = "mp" _global_process_mesh = auto.ProcessMesh([0, 1]) dist_main_prog_load, dist_start_prog_load, loss_load = get_distributed_program( ) place = paddle.set_device("gpu") exe = paddle.static.Executor(place) exe.run(dist_start_prog_load) ckpt_path = [ "./model_state_rank0.pdmodel", "./model_state_rank1.pdmodel" ] dist_attr_path = [ "./dist_attr_rank0.pdattr", "./dist_attr_rank1.pdattr" ] param_dict, pre_dist_attr, add_info = load_distributed_checkpoint( ckpt_path, dist_attr_path) batch = add_info["batch"] batch_size = add_info["batch_size"] start_index = batch * batch_size input = input[start_index:, :] label = label[start_index:, :] cur_dist_attr = get_dist_attr(dist_main_prog_load) sliced_param_dict = merge_and_slice_parameter(param_dict, pre_dist_attr, cur_dist_attr) load_parameter_into_program(sliced_param_dict, dist_main_prog_load) for step in range(10): res = exe.run(dist_main_prog_load, feed={ "input": input[step * 4:(step + 1) * 4, :], "label": label[step * 4:(step + 1) * 4, :] }, fetch_list=[loss_load]) if paddle.distributed.get_rank() in [1]: self.assertEqual(last_res, res[0]) class TestMLPAutoConvertInvalid(unittest.TestCase): def setUp(self): paddle.seed(2021) random.seed(2021) np.random.seed(2021) def test_input_invalid(self): set_default_distributed_context(None) global _global_parallel_strategy _global_parallel_strategy = "mp" global _global_process_mesh _global_process_mesh = auto.ProcessMesh([0, 1]) dist_main_prog, _, _ = get_distributed_program() with self.assertRaises(TypeError): save_distributed_checkpoint( dist_main_prog, [""], [""], addition_info=[0]) with self.assertRaises(ValueError): save_distributed_checkpoint( dist_main_prog, [""], [""], addition_info={"step": 0}) with self.assertRaises(ValueError): save_distributed_checkpoint( dist_main_prog, [""], [""], addition_info={"batch": 0.0}) with self.assertRaises(ValueError): load_checkpoint_into_program(["./model_state_rank.pdmodel"], ["./dist_attr_rank.pdattr"], dist_main_prog) with self.assertRaises(ValueError): load_distributed_checkpoint(["./model_state_rank.pdmodel"], ["./dist_attr_rank.pdattr"]) with self.assertRaises(TypeError): load_distributed_checkpoint({ "0": "./model_state_rank.pdmodel" }, {"1": "./dist_attr_rank.pdattr"}) if __name__ == "__main__": unittest.main()