# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # TODO: define the extention functions import numpy as np from paddle import _C_ops, _legacy_C_ops, in_dynamic_mode from ...common_ops_import import Variable from ...fluid.data_feeder import ( check_dtype, check_type, check_variable_and_dtype, ) from ...fluid.framework import in_dygraph_mode from ...fluid.layer_helper import LayerHelper from ...framework import convert_np_dtype_to_dtype_, core from ...tensor.creation import assign __all__ = [] def diag_embed(input, offset=0, dim1=-2, dim2=-1): """ Creates a tensor whose diagonals of certain 2D planes (specified by dim1 and dim2) are filled by ``input``. By default, a 2D plane formed by the last two dimensions of the returned tensor will be selected. The argument ``offset`` determines which diagonal is generated: - If offset = 0, it is the main diagonal. - If offset > 0, it is above the main diagonal. - If offset < 0, it is below the main diagonal. Args: input(Tensor|numpy.ndarray): The input tensor. Must be at least 1-dimensional. The input data type should be float32, float64, int32, int64. offset(int, optional): Which diagonal to consider. Default: 0 (main diagonal). dim1(int, optional): The first dimension with respect to which to take diagonal. Default: -2. dim2(int, optional): The second dimension with respect to which to take diagonal. Default: -1. Returns: Tensor, the output data type is the same as input data type. Examples: .. code-block:: python import paddle import paddle.nn.functional as F diag_embed_input = paddle.arange(6) diag_embed_output1 = F.diag_embed(diag_embed_input) print(diag_embed_output1) # Tensor(shape=[6, 6], dtype=int64, place=Place(cpu), stop_gradient=True, # [[0, 0, 0, 0, 0, 0], # [0, 1, 0, 0, 0, 0], # [0, 0, 2, 0, 0, 0], # [0, 0, 0, 3, 0, 0], # [0, 0, 0, 0, 4, 0], # [0, 0, 0, 0, 0, 5]]) diag_embed_output2 = F.diag_embed(diag_embed_input, offset=-1, dim1=0,dim2=1 ) print(diag_embed_output2) # Tensor(shape=[7, 7], dtype=int64, place=Place(cpu), stop_gradient=True, # [[0, 0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0, 0], # [0, 1, 0, 0, 0, 0, 0], # [0, 0, 2, 0, 0, 0, 0], # [0, 0, 0, 3, 0, 0, 0], # [0, 0, 0, 0, 4, 0, 0], # [0, 0, 0, 0, 0, 5, 0]]) diag_embed_input_2dim = paddle.reshape(diag_embed_input,[2,3]) print(diag_embed_input_2dim) # Tensor(shape=[2, 3], dtype=int64, place=Place(cpu), stop_gradient=True, # [[0, 1, 2], # [3, 4, 5]]) diag_embed_output3 = F.diag_embed(diag_embed_input_2dim,offset= 0, dim1=0, dim2=2 ) print(diag_embed_output3) # Tensor(shape=[3, 2, 3], dtype=int64, place=Place(cpu), stop_gradient=True, # [[[0, 0, 0], # [3, 0, 0]], # [[0, 1, 0], # [0, 4, 0]], # [[0, 0, 2], # [0, 0, 5]]]) """ if not isinstance(input, Variable): input = assign(input) if in_dygraph_mode(): return _C_ops.diag_embed(input, offset, dim1, dim2) elif in_dynamic_mode(): return _legacy_C_ops.diag_embed( input, "offset", offset, "dim1", dim1, "dim2", dim2 ) inputs = {'Input': [input]} attrs = {'offset': offset, 'dim1': dim1, 'dim2': dim2} def __check_input(input, offset, dim1, dim2): check_dtype( input.dtype, 'Input', ['int32', 'int64', 'float16', 'float32', 'float64'], 'diag_embed', ) input_shape = list(input.shape) assert len(input_shape) >= 1, ( "Input must be at least 1-dimensional, " "But received Input's dimensional: %s.\n" % len(input_shape) ) assert np.abs(dim1) <= len(input_shape), ( "Dim1 is out of range (expected to be in range of [%d, %d], but got %d).\n" % (-(len(input_shape) + 1), len(input_shape), dim1) ) assert np.abs(dim2) <= len(input_shape), ( "Dim2 is out of range (expected to be in range of [%d, %d], but got %d).\n" % (-(len(input_shape) + 1), len(input_shape), dim2) ) dim1_ = dim1 if dim1 >= 0 else len(input_shape) + dim1 + 1 dim2_ = dim2 if dim2 >= 0 else len(input_shape) + dim2 + 1 assert dim1_ != dim2_, ( "dim1 and dim2 cannot be the same dimension." "But received dim1 = %d, dim2 = %d\n" % (dim1, dim2) ) __check_input(input, offset, dim1, dim2) helper = LayerHelper("diag_embed", **locals()) out = helper.create_variable_for_type_inference(dtype=input.dtype) helper.append_op( type='diag_embed', inputs={'Input': [input]}, attrs={'offset': offset, 'dim1': dim1, 'dim2': dim2}, outputs={'Out': [out]}, ) out.stop_gradient = True return out def sequence_mask(x, maxlen=None, dtype='int64', name=None): r""" **SequenceMask Layer** This layer outputs a mask according to the input :code:`x` and :code:`maxlen` with data type of :code:`dtype`. Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where: .. math:: y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n)) .. code-block:: text Case: Consider input: x = [3, 1, 1, 0] max_len = 4 then we get out: mask = [[1, 1, 1, 0], [1, 0, 0, 0], [1, 0, 0, 0], [0, 0, 0, 0]] Args: x (Variable): Input tensor of sequence_mask layer, \ whose elements are integers less than :code:`maxlen`. \ Tensor or LodTensor with shape [d_1, d_2, ..., d_n]. maxlen (int, optional): Maximum length of the sequence. If :code:`maxlen` \ is None, it would be replace with :math:`max(x)`. dtype (np.dtype|paddle.dtype|str, optional): Data type of the output, \ ``int64`` by default. name(str, optional): For detailed information, please refer \ to :ref:`api_guide_Name`. Usually name is no need to set and \ None by default. Returns: Tensor, The output sequence mask. Tensor with shape [d_1, d_2, ..., d_n, maxlen] \ and data type of :code:`dtype`. The data type should be bool, float32, float64, int8, \ int32 or int64. Examples: .. code-block:: python import paddle lengths = paddle.to_tensor([10, 9, 8]) mask = paddle.nn.functional.sequence_mask(lengths) print(mask) # Tensor(shape=[3, 10], dtype=int64, place=Place(gpu:0), stop_gradient=True, # [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1], # [1, 1, 1, 1, 1, 1, 1, 1, 1, 0], # [1, 1, 1, 1, 1, 1, 1, 1, 0, 0]]) """ if in_dygraph_mode(): if not isinstance(dtype, core.VarDesc.VarType): dtype = convert_np_dtype_to_dtype_(dtype) if maxlen is not None: if isinstance(maxlen, core.eager.Tensor): attrs = ('out_dtype', dtype) out = _legacy_C_ops.sequence_mask(x, maxlen, *attrs) else: attrs = ('out_dtype', dtype, 'maxlen', maxlen) out = _legacy_C_ops.sequence_mask(x, None, *attrs) out.stop_gradient = True return out helper = LayerHelper('sequence_mask', **locals()) out = helper.create_variable_for_type_inference(dtype=dtype) inputs = {'X': [x]} attrs = {'out_dtype': out.dtype} if maxlen is not None: if isinstance(maxlen, Variable): inputs['MaxLenTensor'] = maxlen else: attrs['maxlen'] = maxlen helper.append_op( type='sequence_mask', inputs=inputs, outputs={'Y': out}, attrs=attrs ) out.stop_gradient = True return out def gather_tree(ids, parents): r""" To be used after beam search. After beam search, we get selected ids at each time step and the corresponding parents in the search tree. Both ids and parents have the layout :attr:`[max_time, batch_size, beam_size]`. Then :attr:`gather_tree` is used to backtrace from the last time step and generate the full sequences by collecting selected ids. Here is an example: .. code-block:: text Given: ids = [[[2 2] [6 1]] [[3 9] [6 1]] [[0 1] [9 0]]] parents = [[[0 0] [1 1]] [[1 0] [1 0]] [[0 0] [0 1]]] Then: gather_tree(ids, parents) = [[[2 2] [1 6]] [[3 3] [6 1]] [[0 1] [9 0]]] Args: ids(Tensor): A Tensor with shape :attr:`[length, batch_size, beam_size]` and data type :attr:`int32` or :attr:`int64`. It contains the selected ids of all time steps. parents(Tensor): A Tensor with the same shape and data type as :attr:`ids`, It contains the parents corresponding to selected ids when searching among beams. Returns: A Tensor with the same shape and data type as :attr:`ids`. \ It contains the full sequences. The sequences are collected from \ :attr:`ids` by backtracing according to :attr:`parents`. Examples: .. code-block:: python import paddle ids = paddle.to_tensor([[[2, 2], [6, 1]], [[3, 9], [6, 1]], [[0, 1], [9, 0]]]) parents = paddle.to_tensor([[[0, 0], [1, 1]], [[1, 0], [1, 0]], [[0, 0], [0, 1]]]) final_sequences = paddle.nn.functional.gather_tree(ids, parents) # [[[2, 2], [1, 6]], [[3, 3], [6, 1]], [[0, 1], [9, 0]]] """ if ids.ndim != 3: raise ValueError( "The input ids must be a 3D tensor with shape [length, batch_size, beam_size]" ) if ids.ndim != parents.ndim: raise ValueError("The ids's shape must be the same as parents' shape. ") if in_dygraph_mode(): return _C_ops.gather_tree(ids, parents) else: helper = LayerHelper('gather_tree', **locals()) check_variable_and_dtype(ids, 'ids', ['int32', 'int64'], 'gather_tree') check_variable_and_dtype( parents, 'parents', ['int32', 'int64'], 'gather_tree' ) out = helper.create_variable_for_type_inference(dtype=ids.dtype) helper.append_op( type="gather_tree", inputs={"Ids": ids, "Parents": parents}, outputs={"Out": out}, ) return out def temporal_shift(x, seg_num, shift_ratio=0.25, name=None, data_format="NCHW"): """ **Temporal Shift Operator** Calculate the temporal shifting features for Input(X). Input(X) should be in shape of [N*T, C, H, W] or [N*T, H, W, C], while N is the batch size, T is the temporal segment number specified by :attr:`seg_num`, C is the channel number, H and W is the height and width of features. Temporal Shifting is calculated as follows when data format is NCHW: Step 1: Reshape Input(X) to [N, T, C, H, W]. Step 2: Pad 0 to reshaping result in the 2nd(T) dimension with padding width as 1 on each side, padding result will be in shape of [N, T+2, C, H, W]. Step 3: Assume :attr:`shift_ratio` is :math:`1/4`, slice padding result as follows: $$ slice1 = x[:, :T, :C/4, :, :] $$ $$ slice2 = x[:, 2:T+2, C/4:C/2, :, :] $$ $$ slice3 = x[:, 1:T+1, C/2:, :, :] $$ Step 4: Concatenate three slices along the 3rd(C) dimension and reshape result to [N*T, C, H, W]. For details of temporal shifting, please refer to paper: `Temporal Shift Module `_ . Args: x(Tensor): ${x_comment} seg_num(int): ${seg_num_comment} shift_ratio(float): ${shift_ratio_comment} name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default. data_format(str, optional): Data format that specifies the layout of input. It can be "NCHW" or "NHWC". Default: "NCHW". Returns: out(Tensor): The temporal shifting result is a tensor with the same shape and same data type as the input. Examples: .. code-block:: python import paddle import paddle.nn.functional as F input = paddle.randn([6, 4, 2, 2]) out = F.temporal_shift(x=input, seg_num=2, shift_ratio=0.2) """ if data_format not in ["NCHW", "NHWC"]: raise ValueError( "Attr(data_format) should be 'NCHW' or 'NHWC'. " "Received Attr(data_format): {}.".format(data_format) ) if in_dygraph_mode(): return _C_ops.temporal_shift(x, seg_num, shift_ratio, data_format) else: helper = LayerHelper("temporal_shift", **locals()) check_variable_and_dtype( x, 'x', ['float16', 'float32', 'float64'], 'temporal_shift' ) check_type(seg_num, 'seg_num', int, 'temporal_shift') check_type(shift_ratio, 'shift_ratio', float, 'temporal_shift') out = helper.create_variable_for_type_inference(dtype=x.dtype) if not isinstance(seg_num, int): raise TypeError("seg_num must be int type.") helper.append_op( type="temporal_shift", inputs={"X": x}, outputs={"Out": out}, attrs={ "seg_num": seg_num, "shift_ratio": shift_ratio, "data_format": data_format, }, ) return out