// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/diag_kernel.h" #include "paddle/phi/backends/xpu/enforce_xpu.h" #include "paddle/phi/backends/xpu/xpu_context.h" #include "paddle/phi/core/kernel_registry.h" namespace phi { template void DiagKernel(const Context& dev_ctx, const DenseTensor& x, int offset, float padding_value, DenseTensor* out) { using XPUType = typename XPUTypeTrait::Type; auto* x_data = reinterpret_cast(x.data()); dev_ctx.template Alloc(out); auto* out_data = reinterpret_cast(out->data()); auto x_shape = vectorize(x.dims()); auto out_shape = vectorize(out->dims()); if (x.dims().size() == 0) { x_shape = std::vector({1}); } int r = xpu::diag(dev_ctx.x_context(), x_data, out_data, x_shape, out_shape, offset, padding_value); PADDLE_ENFORCE_XDNN_SUCCESS(r, "diag"); } } // namespace phi PD_REGISTER_KERNEL(diag, XPU, ALL_LAYOUT, phi::DiagKernel, phi::dtype::float16, int, float, int64_t) {}