// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "paddle/fluid/lite/core/kernel.h" #include "paddle/fluid/lite/core/op_registry.h" #include "paddle/fluid/lite/core/types.h" namespace paddle { namespace lite { namespace kernels { namespace host { template void mul_compute_eigen(const T* x, int x_h, int x_w, const T* y, int y_h, int y_w, T* out) { using matrix_t = Eigen::Matrix; Eigen::Map X(x, x_h, x_w); Eigen::Map Y(y, y_h, y_w); Eigen::Map Out(out, x_h, y_w); Out = X * Y; } class MulCompute : public KernelLite { public: using param_t = operators::MulParam; void Run() override { auto& param = Param(); core::dim2 x_shape( {static_cast( param.x->dims().Slice(0, param.x_num_col_dims).production()), static_cast( param.x->dims() .Slice(param.x_num_col_dims, param.x->dims().size()) .production())}); core::dim2 y_shape( {static_cast( param.y->dims().Slice(0, param.y_num_col_dims).production()), static_cast( param.y->dims() .Slice(param.y_num_col_dims, param.y->dims().size()) .production())}); mul_compute_eigen(param.x->data(), x_shape.x, x_shape.y, // param.y->data(), y_shape.x, y_shape.y, // param.output->mutable_data()); LOG(INFO) << "MUL x " << *param.x; LOG(INFO) << "MUL W " << *param.y; LOG(INFO) << "MUL out " << *param.output; } virtual ~MulCompute() = default; }; } // namespace host } // namespace kernels } // namespace lite } // namespace paddle REGISTER_LITE_KERNEL(mul, kHost, kFloat, kNCHW, paddle::lite::kernels::host::MulCompute, def) .BindInput("X", {LiteType::GetTensorTy(TARGET(kHost))}) .BindInput("Y", {LiteType::GetTensorTy(TARGET(kHost))}) .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kHost))}) .Finalize();