// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include "paddle/phi/common/amp_type_traits.h" #include "paddle/phi/kernels/funcs/eigen/common.h" #include "paddle/phi/kernels/funcs/eigen/eigen_function.h" #include "paddle/phi/kernels/funcs/reduce_function.h" #include "paddle/phi/kernels/logsumexp_kernel.h" namespace phi { #define HANDLE_DIM(NDIM, RDIM) \ if (ndim == NDIM && rdim == RDIM) { \ funcs::ReduceFunctor>( \ dev_ctx, x, out, axis, keepdim); \ } template struct LogsumexpFunctor { template void operator()(const Context& place, X* x, Y* y, const Dim& dim) { using MT = typename phi::dtype::MPTypeTrait::Type; auto x_dim = x->dimensions(); auto t_dim = x_dim; for (int i = 0; i < static_cast(dim.size()); i++) { t_dim[dim[i]] = 1; } auto r_dim = x_dim; for (int i = 0; i < static_cast(r_dim.size()); i++) { r_dim[i] = 1; } for (int i = 0; i < static_cast(dim.size()); i++) { r_dim[dim[i]] = x_dim[dim[i]]; } auto x_mt = (*x).template cast(); auto y_dim = y->dimensions(); auto x_max = x_mt.maximum(dim); y->device(place) = (x_max + (x_mt - x_max.reshape(t_dim).broadcast(r_dim)).exp().sum(dim).log()) .reshape(y_dim) .template cast(); } }; template void LogsumexpKernel(const Context& dev_ctx, const DenseTensor& x, const std::vector& axis, bool keepdim, bool reduce_all, DenseTensor* out) { dev_ctx.template Alloc(out); const auto& input_dim_size = x.dims().size(); // The dims has full dim, set the reduce_all is True reduce_all |= (static_cast(axis.size()) == input_dim_size); if (reduce_all) { // Flatten and reduce 1-D tensor auto input = phi::EigenVector::Flatten(x); auto output = phi::EigenScalar::From(*out); auto& place = *dev_ctx.eigen_device(); auto reduce_dim = Eigen::array({{0}}); LogsumexpFunctor()(place, &input, &output, reduce_dim); } else { int ndim = input_dim_size; int rdim = axis.size(); if (ndim > 4) { PADDLE_THROW(phi::errors::Unimplemented( "Unsupported dimensions, please keep maximum dimensions of input " "data less than 4.")); } // comments for accelerating compiling temporarily. // HANDLE_DIM(6, 5); // HANDLE_DIM(6, 4); // HANDLE_DIM(6, 3); // HANDLE_DIM(6, 2); // HANDLE_DIM(6, 1); // HANDLE_DIM(5, 4); // HANDLE_DIM(5, 3); // HANDLE_DIM(5, 2); // HANDLE_DIM(5, 1); HANDLE_DIM(4, 3); HANDLE_DIM(4, 2); HANDLE_DIM(4, 1); HANDLE_DIM(3, 2); HANDLE_DIM(3, 1); HANDLE_DIM(2, 1); } } } // namespace phi