# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License from collections import OrderedDict from functools import reduce import paddle import paddle.fluid.core as core from paddle.distributed.fleet.meta_optimizers.common import OpRole from .base_cost import Cost from ..operators.common import get_distributed_operator_impl_container from ..dist_tensor import DistributedTensor class CostEstimator: _sepical_op_type = ["fused_attention", "fused_feedforward"] def __init__(self, program, cluster, mode="modeling", rank=None, loop_count=10): self._program = program self._cluster = cluster self._check_mode(mode) self._mode = mode self._rank = rank if rank is not None else paddle.distributed.get_rank() self._loop_count = loop_count self._global_cost = Cost() self._local_cost_mapping = {} self._detailed_cost = OrderedDict( ) # {`op_id`: {"reshard": [], "dist_op": [], "local_cost": local_cost}}} self._bubble_time_mapping = {} self._ordered_ops = [] self.max_memories = {} self.max_memory = None @property def loop_count(self): return self._loop_count @property def detailed_cost(self): return self._detailed_cost @property def program(self): return self._program @property def rank(self): return self._rank @property def dist_context(self): return self._dist_context @property def cluster(self): return self._cluster @property def mode(self): return self._mode @property def global_cost(self): max_time = 0 memory = 0 flops = 0 for rank in self._local_cost_mapping: cost = self._local_cost_mapping[rank] if cost.time > max_time: max_time = cost.time memory += cost.memory flops += cost.flops self._global_cost.time = max_time self._global_cost.memory = memory self._global_cost.flops = flops return self._global_cost def local_cost(self, rank=None): rank = self.rank if rank is None else rank if rank not in self._local_cost_mapping: self._local_cost_mapping[rank] = Cost() return self._local_cost_mapping[rank] def local_bubble_time(self, rank=None): rank = self.rank if rank is None else rank return self._bubble_time_mapping[rank] def _check_mode(self, mode): if mode not in ["modeling", "profiling"]: raise ValueError( "Just support modeling and profiling, but got {}".format(mode)) def _is_special_var_name(self, var_name): special_var_name = ["lod_tensor_blocking_queue_0"] if var_name in special_var_name: return True return False def _estimate_core(self, dist_context, resharder, block): from ..reshard import get_var_with_recursion ops = block.ops loop_count = None if block.desc.id != self.program.global_block().desc.id: loop_count = self.loop_count else: loop_count = 1 for i in range(loop_count): for op in ops: self._detailed_cost[op.desc.id()] = OrderedDict() # If in the while sub block, the detail of cost is the last cost detail = self._detailed_cost[op.desc.id()] detail["reshard_cost"] = OrderedDict() # detail["dist_op_cost"] = [] if int(op.attr('op_role')) == int(OpRole.Optimize): continue if op.type in [ "create_py_reader", "create_double_buffer_reader", "read" ]: continue # NOTE: It does not support nested loop and just supports while op when op has sub block now. if op.type == "while": while_block = self.program.blocks[op.attr("sub_block").id] self._estimate_core(dist_context, resharder, while_block) continue for var_name in op.input_arg_names: if self._is_special_var_name(var_name): continue var = get_var_with_recursion(var_name, block, self.program) reshard_cost = resharder.get_cost(op, var, self.cluster) # Calc reshard cost if reshard_cost is not None: detail["reshard_cost"][var_name] = reshard_cost comm_costs = reshard_cost[0] local_comp_cost = reshard_cost[1] for comm_cost in comm_costs: # Time is cumulative in global cost and local cost, but memory and flops just are cumulative in global cost. # Comm sync for item in comm_cost: group_ranks, cost = item max_time = None cost_time = {} for rank in group_ranks: rank_cost = self.local_cost(rank) cost_time[rank] = rank_cost.time if max_time is None: max_time = rank_cost.time else: if max_time < rank_cost.time: max_time = rank_cost.time for rank in group_ranks: self.local_cost( rank).time = max_time + cost.time if rank not in self._bubble_time_mapping: self._bubble_time_mapping[rank] = 0 self._bubble_time_mapping[rank] += ( max_time - cost_time[rank]) for rank in local_comp_cost: for comp_cost in local_comp_cost[rank]: self.local_cost(rank).time += comp_cost.time # Calc dist op cost dist_op = dist_context.get_dist_op_for_program(op) op_dist_attr = dist_op.dist_attr processes = op_dist_attr.process_mesh.processes container = get_distributed_operator_impl_container( op_dist_attr.impl_type) dist_impl = container.impls[op_dist_attr.impl_idx] dist_op_cost = dist_impl.calc_cost(op.attr('op_role'), dist_op, dist_context, self.cluster) detail["dist_op_cost"] = dist_op_cost if dist_op_cost is None: assert dist_op.serial_op.type in CostEstimator._sepical_op_type continue for item in dist_op_cost: if isinstance(item, list): # Comm sync for comm_op_cost in item: max_time = None cost_time = {} group_ranks = comm_op_cost.group_ranks for rank in comm_op_cost.group_ranks: rank_cost = self.local_cost(rank) cost_time[rank] = rank_cost.time if max_time is None: max_time = rank_cost.time else: if max_time < rank_cost.time: max_time = rank_cost.time for rank in group_ranks: self.local_cost( rank).time = max_time + comm_op_cost.time if rank not in self._bubble_time_mapping: self._bubble_time_mapping[rank] = 0 self._bubble_time_mapping[rank] += ( max_time - cost_time[rank]) elif isinstance(item, dict): # Op just one for rank in processes: # DP+PP+MP if rank not in item: continue self.local_cost(rank).time += item[rank].time def prepare(self): self._global_cost = Cost() self._local_cost_mapping = {} self._detailed_cost = OrderedDict() self._bubble_time_mapping = {} def _calculate_bytes(self, sizes, dtype): if sizes: total_count = reduce(lambda x, y: x * y, sizes) else: total_count = 0 if dtype == paddle.float64 or dtype == paddle.int64: dtype_factor = 8 elif dtype == paddle.float32 or dtype == paddle.int32: dtype_factor = 4 elif dtype == paddle.float16 or dtype == paddle.bfloat16 \ or dtype == paddle.int16: dtype_factor = 2 elif dtype == paddle.int8 or dtype == paddle.uint8: dtype_factor = 1 else: dtype_factor = 8 memory = total_count * dtype_factor return memory def _estimate_max_memory_by_dist_op(self, dist_context): # This estimation will be improved, now reshard and inplace are not considered. # Persist var is not free. def _convert_pm_and_dm_to_str(process_mesh, dims_mapping): processes = ",".join([str(x) for x in process_mesh.processes]) topology = ",".join([str(x) for x in process_mesh.topology]) dims_mapping = ",".join([str(x) for x in dims_mapping]) result = processes + topology + dims_mapping return result memories = {} self.max_memories = {} var_info = { } # var_name: [[process_mesh, dims_mapping], [id]], [[process_mesh, dims_mapping], [id]]} for block in self.program.blocks: for op in block.ops: self._ordered_ops.append([op.desc.id(), op]) self._ordered_ops.sort(key=lambda x: x[0]) for op_id, op in self._ordered_ops: if op.type in [ "create_py_reader", "create_double_buffer_reader", "read" ]: continue dist_op = dist_context.get_dist_op_for_program(op) process_mesh = dist_op.dist_attr.process_mesh for var_name in op.input_arg_names: input_dims_mapping = dist_op.dist_attr.get_input_dims_mapping( var_name) if var_name not in var_info: var_info[var_name] = {} key = _convert_pm_and_dm_to_str(process_mesh, input_dims_mapping) if key not in var_info[var_name]: var_info[var_name][key] = {} # It is even partition now if "memory" not in var_info[var_name][key]: var = dist_op.get_serial_input(var_name) global_sizes = var.shape dtype = var.dtype sizes = DistributedTensor.get_local_sizes( global_sizes, input_dims_mapping, process_mesh.topology, process_mesh.processes) var_info[var_name][key]["memory"] = self._calculate_bytes( sizes, dtype) if "position" not in var_info[var_name][key]: var_info[var_name][key]["position"] = [] var_info[var_name][key]["position"].append(op_id) for var_name in op.output_arg_names: output_dims_mapping = dist_op.dist_attr.get_output_dims_mapping( var_name) if var_name not in var_info: var_info[var_name] = {} key = _convert_pm_and_dm_to_str(process_mesh, output_dims_mapping) if key not in var_info[var_name]: var_info[var_name][key] = {} if "memory" not in var_info[var_name][key]: var = dist_op.get_serial_output(var_name) global_sizes = var.shape dtype = var.dtype sizes = DistributedTensor.get_local_sizes( global_sizes, output_dims_mapping, process_mesh.topology, process_mesh.processes) var_info[var_name][key]["memory"] = self._calculate_bytes( sizes, dtype) if "position" not in var_info[var_name][key]: var_info[var_name][key]["position"] = [] var_info[var_name][key]["position"].append(op_id) has_used_vars = set() for op_id, op in self._ordered_ops: if op.type in [ "create_py_reader", "create_double_buffer_reader", "read" ]: continue can_free_memories = {} can_free_vars = set() dist_op = dist_context.get_dist_op_for_program(op) process_mesh = dist_op.dist_attr.process_mesh for var_name in op.input_arg_names: input_dims_mapping = dist_op.dist_attr.get_input_dims_mapping( var_name) key = _convert_pm_and_dm_to_str(process_mesh, input_dims_mapping) has_used_var = var_name + key var = dist_op.get_serial_input(var_name) # Not used if var_name + key not in has_used_vars: has_used_vars.add(has_used_var) for process in process_mesh.processes: if process not in memories: memories[process] = 0 memories[process] += var_info[var_name][key]["memory"] # Used else: if op_id == var_info[var_name][key]["position"][-1]: if has_used_var not in can_free_vars: can_free_vars.add(has_used_var) if not var.persistable: for process in process_mesh.processes: if process not in can_free_memories: can_free_memories[process] = 0 can_free_memories[process] += var_info[ var_name][key]["memory"] for var_name in op.output_arg_names: output_dims_mapping = dist_op.dist_attr.get_output_dims_mapping( var_name) key = _convert_pm_and_dm_to_str(process_mesh, output_dims_mapping) has_used_var = var_name + key var = dist_op.get_serial_output(var_name) # Not used if var_name + key not in has_used_vars: has_used_vars.add(has_used_var) for process in process_mesh.processes: if process not in memories: memories[process] = 0 memories[process] += var_info[var_name][key]["memory"] # Used else: if op_id == var_info[var_name][key]["position"][-1]: if has_used_var not in can_free_vars: can_free_vars.add(has_used_var) if not var.persistable: for process in process_mesh.processes: if process not in can_free_memories: can_free_memories[process] = 0 can_free_memories[process] += var_info[ var_name][key]["memory"] # Calc peak memory for process in memories: if process not in self.max_memories: self.max_memories[process] = memories[process] else: if memories[process] > self.max_memories[process]: self.max_memories[process] = memories[process] # Free memory for process in can_free_memories: if process in memories: memories[process] -= can_free_memories[process] # Calculate the max memory in all ranks max_memory = max(self.max_memories.values()) self.max_memory = max_memory return max_memory def estimate(self, dist_context, resharder=None): self.prepare() from ..reshard import Resharder resharder = Resharder(self.program, None, self.rank, dist_context, []) if resharder is None else resharder block = self.program.global_block() self._estimate_core(dist_context, resharder, block) return self.global_cost def _print_tag(self, max_len, length): tag = "+" + "-" * max_len for i in range(length): print(tag, end="") if i == length - 1: print("+") def _print_vals(self, vals, max_len): for idx, val in enumerate(vals): s = "|" + str(val).center(max_len) print(s, end="") if idx == len(vals) - 1: print("|") def _pretty_print_memory_cost(self): """Print memory of every rank prettily.""" if not self.max_memories or not self.max_memory: raise ValueError("Please calculate memory cost before print.") # Padding automatically max_len = 0 header = ["Rank", "Memory(MiB)"] memories = [ int(item // 1e6) for item in list(self.max_memories.values()) ] for memory in (memories + header): if len(str(memory)) > max_len: max_len = len(str(memory)) max_len += 4 # for pretty print of center # Print tag self._print_tag(max_len, len(header)) # Print header self._print_vals(header, max_len) # Print tag self._print_tag(max_len, len(header)) # Print rank and its memory for i in range(len(self.max_memories)): memory = memories[i] vals = [i, memory] self._print_vals(vals, max_len) self._print_tag(max_len, len(header)) def _pretty_print_global(self): """Print global execution time and max memory prettily.""" if not self.max_memories or not self.max_memory: raise ValueError("Please calculate cost before print.") # Padding automatically max_len = 0 header = ["Execution Time(ms)", "Max Memory(MiB)"] vals = [round(self.global_cost.time, 3), int(self.max_memory // 1e6)] for memory in (vals + header): if len(str(memory)) > max_len: max_len = len(str(memory)) max_len += 4 # for pretty print of center # Print tag self._print_tag(max_len, len(header)) # Print header self._print_vals(header, max_len) # Print tag self._print_tag(max_len, len(header)) # Print exec time and max memory self._print_vals(vals, max_len) # Print tag self._print_tag(max_len, len(header)) def pretty_print_cost(self): """Print cost prettily.""" print("The global execution time and max memory are as follows:") self._pretty_print_global() print("The memory of every rank is as follows:") self._pretty_print_memory_cost() def get_cost_from_engine(engine, mode): from ..utils import to_list # Construct cost estimator by original main program serial_main_prog = engine._serial_main_progs[mode].clone( ) if mode in engine._serial_main_progs else engine._orig_main_prog.clone() serial_startup_prog = engine._serial_startup_progs[mode].clone( ) if mode in engine._serial_startup_progs else engine._orig_startup_prog.clone( ) losses = to_list( engine._loss) if (not isinstance(engine._loss, paddle.nn.Layer) and not callable(engine._loss)) else engine._losses if mode in engine._dist_contexts: dist_context = engine._dist_contexts[mode] completer = engine._planners[mode].completer else: from ..completion import Completer from ..dist_context import DistributedContext dist_context = DistributedContext(serial_main_prog, serial_startup_prog, engine._optimizer, losses, {}, {"loss": losses}, engine._cluster, engine._strategy) completer = Completer(dist_context) completer.complete_forward_annotation() dist_context.block_state.parse_forward_blocks( dist_context.serial_main_program) if mode == "eval" or mode == "predict": cost_estimator = CostEstimator(serial_main_prog, engine._cluster) elif mode == "train": from ..parallelizer_v2 import Parallelizer # Get serial main program with backward serial_optimizer = engine._optimizer parallelizer = Parallelizer(mode, completer, dist_context) # Generate backward loss_name = dist_context.serial_loss.name serial_loss = serial_main_prog.global_block()._var_recursive(loss_name) params_grads = parallelizer._generate_backward(serial_main_prog, serial_startup_prog, serial_loss) # Generate optimizer optimizer_ops = parallelizer._generate_optimizer( serial_main_prog, serial_startup_prog, serial_optimizer, params_grads) cost_estimator = CostEstimator(serial_main_prog, engine._cluster) # Estimate global_cost and max memory global_cost = cost_estimator.estimate(dist_context) max_memory = cost_estimator._estimate_max_memory_by_dist_op(dist_context) # Print the cost cost_estimator.pretty_print_cost() return global_cost, max_memory