# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ imikolov's simple dataset. This module will download dataset from http://www.fit.vutbr.cz/~imikolov/rnnlm/ and parse training set and test set into paddle reader creators. """ import paddle.v2.dataset.common import collections import tarfile __all__ = ['train', 'test', 'build_dict'] URL = 'http://www.fit.vutbr.cz/~imikolov/rnnlm/simple-examples.tgz' MD5 = '30177ea32e27c525793142b6bf2c8e2d' class DataType(object): NGRAM = 1 SEQ = 2 def word_count(f, word_freq=None): if word_freq is None: word_freq = collections.defaultdict(int) for l in f: for w in l.strip().split(): word_freq[w] += 1 word_freq[''] += 1 word_freq[''] += 1 return word_freq def build_dict(min_word_freq=50): """ Build a word dictionary from the corpus, Keys of the dictionary are words, and values are zero-based IDs of these words. """ train_filename = './simple-examples/data/ptb.train.txt' test_filename = './simple-examples/data/ptb.valid.txt' with tarfile.open( paddle.v2.dataset.common.download( paddle.v2.dataset.imikolov.URL, 'imikolov', paddle.v2.dataset.imikolov.MD5)) as tf: trainf = tf.extractfile(train_filename) testf = tf.extractfile(test_filename) word_freq = word_count(testf, word_count(trainf)) if '' in word_freq: # remove for now, since we will set it as last index del word_freq[''] word_freq = filter(lambda x: x[1] > min_word_freq, word_freq.items()) word_freq_sorted = sorted(word_freq, key=lambda x: (-x[1], x[0])) words, _ = list(zip(*word_freq_sorted)) word_idx = dict(zip(words, xrange(len(words)))) word_idx[''] = len(words) return word_idx def reader_creator(filename, word_idx, n, data_type): def reader(): with tarfile.open( paddle.v2.dataset.common.download( paddle.v2.dataset.imikolov.URL, 'imikolov', paddle.v2.dataset.imikolov.MD5)) as tf: f = tf.extractfile(filename) UNK = word_idx[''] for l in f: if DataType.NGRAM == data_type: assert n > -1, 'Invalid gram length' l = [''] + l.strip().split() + [''] if len(l) >= n: l = [word_idx.get(w, UNK) for w in l] for i in range(n, len(l) + 1): yield tuple(l[i - n:i]) elif DataType.SEQ == data_type: l = l.strip().split() l = [word_idx.get(w, UNK) for w in l] src_seq = [word_idx['']] + l trg_seq = l + [word_idx['']] if n > 0 and len(src_seq) > n: continue yield src_seq, trg_seq else: assert False, 'Unknow data type' return reader def train(word_idx, n, data_type=DataType.NGRAM): """ imikolov training set creator. It returns a reader creator, each sample in the reader is a word ID tuple. :param word_idx: word dictionary :type word_idx: dict :param n: sliding window size if type is ngram, otherwise max length of sequence :type n: int :param data_type: data type (ngram or sequence) :type data_type: member variable of DataType (NGRAM or SEQ) :return: Training reader creator :rtype: callable """ return reader_creator('./simple-examples/data/ptb.train.txt', word_idx, n, data_type) def test(word_idx, n, data_type=DataType.NGRAM): """ imikolov test set creator. It returns a reader creator, each sample in the reader is a word ID tuple. :param word_idx: word dictionary :type word_idx: dict :param n: sliding window size if type is ngram, otherwise max length of sequence :type n: int :param data_type: data type (ngram or sequence) :type data_type: member variable of DataType (NGRAM or SEQ) :return: Test reader creator :rtype: callable """ return reader_creator('./simple-examples/data/ptb.valid.txt', word_idx, n, data_type) def fetch(): paddle.v2.dataset.common.download(URL, "imikolov", MD5)