// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/multiplex_kernel.h" #include "paddle/fluid/memory/memcpy.h" #include "paddle/phi/backends/gpu/gpu_context.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/core/tensor_utils.h" namespace phi { template void MultiplexKernel(const Context& ctx, const std::vector& ins, const DenseTensor& ids, DenseTensor* out) { ctx.template Alloc(out); for (size_t i = 0; i < ins.size(); ++i) { PADDLE_ENFORCE_GT( ins[i]->numel(), 0, errors::OutOfRange( "indexing will be out of bounds with size 0 for the %d-th input.", i)); } auto rows = ins[0]->dims()[0]; auto cols = ins[0]->numel() / rows; DenseTensor index_t_cpu; phi::Copy(ctx, ids, phi::CPUPlace(), true, &index_t_cpu); auto* index = index_t_cpu.data(); auto stream = ctx.stream(); for (auto i = 0; i < ids.dims()[0]; i++) { int32_t k = index[i]; PADDLE_ENFORCE_GE( k, 0, errors::PreconditionNotMet("index must be nonnegative.")); PADDLE_ENFORCE_LT(static_cast(k), ins.size(), errors::PreconditionNotMet( "index exceeds the number of candidate tensors.")); paddle::memory::Copy(ctx.GetPlace(), out->data() + i * cols, ctx.GetPlace(), ins[k]->data() + i * cols, cols * sizeof(T), stream); } } } // namespace phi PD_REGISTER_KERNEL(multiplex, GPU, ALL_LAYOUT, phi::MultiplexKernel, float, double, int, int64_t) {}