// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/multiplex_grad_kernel.h" #include "paddle/fluid/memory/memcpy.h" #include "paddle/phi/backends/gpu/gpu_context.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/core/tensor_utils.h" #include "paddle/phi/kernels/funcs/eigen/common.h" namespace phi { template void MultiplexGradKernel(const Context& ctx, const DenseTensor& ids, const DenseTensor& out_grad, std::vector ins_grad) { size_t idx = -1UL; for (size_t i = 0; i < ins_grad.size(); i++) { if (ins_grad[i]) { ctx.template Alloc(ins_grad[i]); auto t = phi::EigenVector::Flatten(*ins_grad[i]); t.device(*ctx.eigen_device()) = t.constant(static_cast(0)); idx = i; } } if (idx == -1UL) return; auto rows = ins_grad[idx]->dims()[0]; auto cols = ins_grad[idx]->numel() / rows; DenseTensor index_t_cpu; phi::Copy(ctx, ids, phi::CPUPlace(), true, &index_t_cpu); auto* index = index_t_cpu.data(); auto stream = ctx.stream(); for (auto i = 0; i < rows; i++) { size_t k = static_cast(index[i]); if (ins_grad[k]) { paddle::memory::Copy(ctx.GetPlace(), ins_grad[k]->data() + i * cols, ctx.GetPlace(), out_grad.data() + i * cols, cols * sizeof(T), stream); } } } } // namespace phi PD_REGISTER_KERNEL(multiplex_grad, GPU, ALL_LAYOUT, phi::MultiplexGradKernel, float, double, int, int64_t) {}