// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/gelu_kernel.h" #include "paddle/phi/backends/gpu/gpu_context.h" #include "paddle/phi/common/amp_type_traits.h" #include "paddle/phi/core/dense_tensor.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/funcs/broadcast_function.h" #include "paddle/phi/kernels/gpu/gelu_funcs.h" DECLARE_bool(use_fast_math); namespace phi { template struct GeluWithApproximateGradFunctor { using MPType = typename phi::dtype::MPTypeTrait::Type; inline HOSTDEVICE T operator()(T arg_x, T arg_dout) { MPType x = static_cast(arg_x); MPType dout = static_cast(arg_dout); MPType one = static_cast(1); MPType half = static_cast(0.5); MPType kAlpha = static_cast(M_2_SQRTPI * M_SQRT1_2); MPType kBeta = kAlpha * static_cast(GELU_CONSTANT) * static_cast(3); auto cube_x = x * x * x; auto tanh_out = tanh(kAlpha * ((static_cast(GELU_CONSTANT) * cube_x) + x)); auto ans = half * (one + tanh_out + (one - tanh_out * tanh_out) * (x * kAlpha + kBeta * cube_x)); return static_cast(ans * dout); } }; template struct GeluWithoutApproximateGradFunctor { using MPType = typename phi::dtype::MPTypeTrait::Type; inline HOSTDEVICE T operator()(T arg_x, T arg_dout) { MPType x = static_cast(arg_x); MPType dout = static_cast(arg_dout); constexpr MPType kBeta = M_2_SQRTPI * M_SQRT1_2 * static_cast(0.5); const MPType cdf = normcdf(x); const MPType pdf = exp(static_cast(-0.5) * x * x) * kBeta; return static_cast(dout * (cdf + x * pdf)); } }; template void GeluGradKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& out_grad, bool approximate, DenseTensor* x_grad) { dev_ctx.template Alloc(x_grad); std::vector ins = {&x, &out_grad}; std::vector outs = {x_grad}; if (approximate) { #ifdef __NVCC__ if (std::is_same::value) { size_t n = x.numel(); const auto* x_ptr = reinterpret_cast(x.data()); const auto* y_g_ptr = reinterpret_cast(out_grad.data()); auto* x_g_ptr = reinterpret_cast<__half*>(x_grad->data()); if (TryLaunchFP16FastGeluBwdVectorizeCUDAKernel( dev_ctx, x_ptr, y_g_ptr, x_g_ptr, n)) { return; } } #endif using Functor = GeluWithApproximateGradFunctor; phi::funcs::ElementwiseKernel( dev_ctx, ins, &outs, Functor()); } else { using Functor = GeluWithoutApproximateGradFunctor; phi::funcs::ElementwiseKernel( dev_ctx, ins, &outs, Functor()); } } } // namespace phi PD_REGISTER_KERNEL(gelu_grad, GPU, ALL_LAYOUT, phi::GeluGradKernel, float, double, phi::dtype::float16) {}