// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/set_value_grad_kernel.h" #include "paddle/phi/backends/xpu/enforce_xpu.h" #include "paddle/phi/backends/xpu/xpu_context.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/common/int_array.h" #include "paddle/phi/common/scalar.h" #include "paddle/phi/core/dense_tensor.h" #include "paddle/phi/core/tensor_utils.h" #include "paddle/phi/kernels/empty_kernel.h" #include "paddle/phi/kernels/funcs/broadcast_function.h" #include "paddle/phi/kernels/funcs/eigen/common.h" #include "paddle/phi/kernels/funcs/eigen/eigen_function.h" #include "paddle/phi/kernels/funcs/elementwise_functor.h" #include "paddle/phi/kernels/funcs/slice_utils.h" namespace phi { template void SetValueGradKernel(const Context& dev_ctx, const DenseTensor& out_grad, const IntArray& starts, const IntArray& ends, const IntArray& steps, const std::vector& axes, const std::vector& decrease_axes, const std::vector& none_axes, DenseTensor* x_grad, DenseTensor* value_grad) { using XPUType = typename XPUTypeTrait::Type; x_grad->Resize(out_grad.dims()); dev_ctx.template Alloc(x_grad); dev_ctx.template Alloc(value_grad); const XPUType* dy_data = reinterpret_cast(out_grad.data()); XPUType* dx_data = reinterpret_cast(x_grad->data()); XPUType* dv_data = reinterpret_cast(value_grad->data()); std::vector starts_vec = starts.GetData(); std::vector ends_vec = ends.GetData(); std::vector steps_vec = steps.GetData(); auto dy_dims = out_grad.dims(); std::vector dy_shape; for (int i = 0; i < dy_dims.size(); ++i) { dy_shape.push_back(dy_dims[i]); } auto dv_dims = value_grad->dims(); std::vector dv_shape; for (int i = 0; i < dv_dims.size(); ++i) { dv_shape.push_back(dv_dims[i]); } auto dx_dims = x_grad->dims(); std::vector dx_shape; for (int i = 0; i < dx_dims.size(); ++i) { dx_shape.push_back(dx_dims[i]); } std::vector starts_vec_int32; for (size_t i = 0; i < starts_vec.size(); ++i) { starts_vec_int32.push_back(starts_vec[i]); } std::vector ends_vec_int32; for (size_t i = 0; i < ends_vec.size(); ++i) { ends_vec_int32.push_back(ends_vec[i]); } std::vector steps_vec_int32; for (size_t i = 0; i < steps_vec.size(); ++i) { steps_vec_int32.push_back(steps_vec[i]); } std::vector axes_int32; for (size_t i = 0; i < axes.size(); ++i) { axes_int32.push_back(axes[i]); } std::vector decrease_axes_int32; for (size_t i = 0; i < decrease_axes.size(); ++i) { decrease_axes_int32.push_back(decrease_axes[i]); } std::vector none_axes_int32; for (size_t i = 0; i < none_axes.size(); ++i) { none_axes_int32.push_back(none_axes[i]); } int r = xpu::set_value_grad(dev_ctx.x_context(), dy_data, dx_data, dv_data, dy_shape, dv_shape, starts_vec_int32, ends_vec_int32, steps_vec_int32, axes_int32, decrease_axes_int32, none_axes_int32); PADDLE_ENFORCE_XDNN_SUCCESS(r, "set_value_grad"); } } // namespace phi