/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/framework/parallel_executor.h" #include "ThreadPool.h" #include "lod_tensor.h" #include "lod_tensor_array.h" #include "op_registry.h" #include "paddle/fluid/framework/details/computation_op_handle.h" #include "paddle/fluid/framework/details/fetch_op_handle.h" #include "paddle/fluid/framework/details/nccl_all_reduce_op_handle.h" #include "paddle/fluid/framework/details/op_handle_base.h" #include "paddle/fluid/framework/details/scale_loss_grad_op_handle.h" #include "paddle/fluid/framework/details/var_handle.h" #include "paddle/fluid/platform/nccl_helper.h" namespace paddle { namespace framework { using details::ComputationOpHandle; using details::DummyVarHandle; using details::FetchOpHandle; using details::NCCLAllReduceOpHandle; using details::OpHandleBase; using details::ScaleLossGradOpHandle; using details::VarHandle; using details::VarHandleBase; class ParallelExecutorPrivate { public: explicit ParallelExecutorPrivate(size_t num_threads, const std::vector &places) : places_(places), fetch_dev_ctxs_(places), pool_(num_threads <= 1 ? nullptr : new ThreadPool(num_threads)) { vars_.resize(places.size()); } std::vector places_; platform::DeviceContextPool fetch_dev_ctxs_; std::vector local_scopes_; Scope *global_scope_; std::unique_ptr nccl_ctxs_; std::vector>> vars_; std::unordered_set> dep_vars_; std::vector> ops_; // Use a simpler thread pool, might be faster. std::unique_ptr pool_; std::unique_ptr exception_; VarHandle *GetVarHandle(const std::string &each_var_name, const platform::Place &place, size_t place_offset) { auto &var_holders = vars_[place_offset]; auto &var_holder = var_holders[each_var_name]; VarHandle *var = nullptr; if (var_holder.empty()) { auto &init_var = var_holder[0]; init_var.place_ = place; init_var.name_ = each_var_name; init_var.generated_op_ = nullptr; init_var.version_ = 0; var = &init_var; } else { var = &var_holder.rbegin()->second; } return var; } void RunOp( bool use_event, std::unordered_map> &pending_vars, OpHandleBase *op) { std::vector *> *ready_buffer = new std::vector *>(); for (auto *var : op->outputs_) { ready_buffer->emplace_back(&pending_vars[var]); } auto op_run = [ready_buffer, op, this, use_event] { try { VLOG(10) << op->DebugString(); op->Run(use_event); for (auto *ready : *ready_buffer) { ready->store(true, std::memory_order_release); } delete ready_buffer; } catch (platform::EnforceNotMet ex) { exception_.reset(new platform::EnforceNotMet(ex)); } catch (...) { LOG(FATAL) << "Unknown exception catched"; } }; if (pool_) { pool_->enqueue(op_run); } else { op_run(); } } void GenerateVar(OpHandleBase *op_handle, const std::string &each_var_name, const platform::Place &place, size_t place_offset) { auto &vars = vars_[place_offset][each_var_name]; size_t version = vars.size(); auto &var = vars[version]; var.version_ = version; var.name_ = each_var_name; var.place_ = place; op_handle->AddOutput(&var); } }; ParallelExecutor::ParallelExecutor( size_t num_threads, const std::vector &places, const std::unordered_set ¶ms, const ProgramDesc &startup_program, const ProgramDesc &main_program, const std::string &loss_var_name, Scope *scope) : member_(new ParallelExecutorPrivate(num_threads, places)) { member_->global_scope_ = scope; // Step 1. RunStartupProgram and Bcast the params to devs. Executor exe(places[0]); exe.Run(startup_program, scope, 0); // Create local scopes for (size_t i = 0; i < member_->places_.size(); ++i) { member_->local_scopes_.push_back(&scope->NewScope()); } // Bcast Parameters to all GPUs BuildNCCLCommunicator(); if (platform::is_gpu_place(places[0]) && member_->local_scopes_.size() != 1) { // Is CUDA BCastParamsToGPUs(startup_program); } // Startup Program has been run. All local scopes has correct parameters. // Step 2. Convert main_program to SSA form and dependency graph. Also, insert // ncclOp ConstructDependencyGraph(params, main_program, loss_var_name); // Step 3. Create vars in each scope; for (auto *scope : member_->local_scopes_) { for (auto *var : main_program.Block(0).AllVars()) { if (scope->FindVar(var->Name()) != nullptr) { continue; } InitializeVariable(scope->Var(var->Name()), var->GetType()); } } } void ParallelExecutor::ConstructDependencyGraph( const std::unordered_set ¶ms, const ProgramDesc &main_program, const std::string &loss_var_name) const { std::unordered_set grads; for (auto &each_param : params) { grads.insert(each_param + "@GRAD"); } bool is_forwarding = true; for (auto *op : main_program.Block(0).AllOps()) { bool change_forward = false; if (!is_forwarding) { // FIXME(yy): Do not hard code like this if (op->OutputArgumentNames().size() == 1 && op->OutputArgumentNames()[0] == loss_var_name + "@GRAD") { continue; // Drop fill 1. for backward coeff; } } for (size_t i = 0; i < member_->places_.size(); ++i) { auto &p = member_->places_[i]; auto *s = member_->local_scopes_[i]; member_->ops_.emplace_back(new ComputationOpHandle(*op, s, p)); auto *op_handle = member_->ops_.back().get(); op_handle->dev_ctx_[p] = const_cast( platform::DeviceContextPool::Instance().Get(p)); auto var_names = op->InputArgumentNames(); for (auto &each_var_name : var_names) { VarHandle *var = member_->GetVarHandle(each_var_name, p, i); op_handle->AddInput(var); } var_names = op->OutputArgumentNames(); for (auto &each_var_name : var_names) { member_->GenerateVar(op_handle, each_var_name, p, i); } if (is_forwarding) { if (var_names.size() == 1 && var_names[0] == loss_var_name) { // Insert ScaleCost OpHandle op_handle = new ScaleLossGradOpHandle(this->member_->local_scopes_.size(), s, p, member_->nccl_ctxs_->DevCtx(p)); member_->ops_.emplace_back(op_handle); // FIXME: Currently ScaleLossGradOp only use device_count as scale // factor. So it does not depend on any other operators. // VarHandle *loss = GetVarHandle(loss_var_name, place); // loss->pending_ops_.emplace_back(op_handle); // op_handle->inputs_.emplace_back(loss); member_->GenerateVar(op_handle, loss_var_name + "@GRAD", p, i); change_forward = true; } } } if (change_forward) { is_forwarding = false; } if (!is_forwarding) { auto var_names = op->OutputArgumentNames(); for (auto &og : var_names) { if (grads.count(og) != 0) { // is param grad // Insert NCCL AllReduce Op member_->ops_.emplace_back(new NCCLAllReduceOpHandle( member_->local_scopes_, member_->places_, *member_->nccl_ctxs_)); auto *op_handle = member_->ops_.back().get(); for (size_t i = 0; i < member_->places_.size(); ++i) { auto &p = member_->places_[i]; auto &vars = member_->vars_[i][og]; if (vars.empty()) { // This device has no data. continue. continue; } auto *prev_grad = &vars[vars.size() - 1]; op_handle->AddInput(prev_grad); auto &var = vars[vars.size()]; var.place_ = p; var.name_ = og; var.version_ = vars.size() - 1; op_handle->AddOutput(&var); } } } } } /* Dependency graph has been constructed. However, there are still data harzaeds need to be handled. */ PolishGraphToSupportDataHazards(); } /** * We only handle write after read(WAR), since it should not have a write * after write in program. If there are write after write operators, we need * prune them. * * https://en.wikipedia.org/wiki/Hazard_(computer_architecture)#Write_after_read_(WAR) */ void ParallelExecutor::PolishGraphToSupportDataHazards() const { for (auto &var_map : member_->vars_) { for (auto &name_pair : var_map) { if (name_pair.second.size() <= 1) { return; } auto it_new = name_pair.second.rbegin(); auto it_old = name_pair.second.rbegin(); ++it_old; for (; it_old != name_pair.second.rend(); it_new = it_old, ++it_old) { auto *write_op = it_new->second.generated_op_; auto &read_ops = it_old->second.pending_ops_; auto *ex_write_op = it_old->second.generated_op_; if (ex_write_op == nullptr) { // Nobody write this var. continue; } for (auto *read_op : read_ops) { // Manually add a dependency var from read_op to write_op; if (read_op == write_op) { // Read Write is the same op. continue; } auto *dep_var = new DummyVarHandle(); read_op->AddOutput(dep_var); write_op->AddInput(dep_var); member_->dep_vars_.emplace(dep_var); } } } } } void ParallelExecutor::BCastParamsToGPUs( const ProgramDesc &startup_program) const { #ifdef PADDLE_WITH_CUDA auto *main_scope = member_->local_scopes_[0]; for (auto *var_desc : startup_program.Block(0).AllVars()) { if (var_desc->GetType() == proto::VarType::LOD_TENSOR) { auto &main_tensor = main_scope->FindVar(var_desc->Name())->Get(); ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type()); auto &dims = main_tensor.dims(); size_t numel = main_tensor.numel(); platform::NCCLGroupGuard guard; for (size_t i = 0; i < member_->places_.size(); ++i) { auto place = member_->places_[i]; void *buffer; if (i == 0) { buffer = const_cast(main_tensor.data()); } else { auto local_scope = member_->local_scopes_[i]; auto *t = local_scope->Var(var_desc->Name())->GetMutable(); t->Resize(dims); buffer = t->mutable_data(place, main_tensor.type()); } auto &nccl_ctx = member_->nccl_ctxs_->at(place); platform::dynload::ncclBcast(buffer, numel, data_type, 0, nccl_ctx.comm_, nccl_ctx.stream()); } } member_->nccl_ctxs_->WaitAll(); } #else PADDLE_THROW("Not compiled with CUDA"); #endif } void ParallelExecutor::BuildNCCLCommunicator() const { #ifdef PADDLE_WITH_CUDA member_->nccl_ctxs_.reset(new platform::NCCLContextMap(member_->places_)); #endif } void ParallelExecutor::Run(const std::vector &fetch_tensors, const std::string &fetched_var_name) { bool use_event = true; FeedFetchList fetched_data(fetch_tensors.size()); // Version --> VarHandle member_->exception_.reset(); std::unordered_map> pending_vars; std::unordered_map pending_ops; std::vector dummy_vars; for (auto &var_map : member_->vars_) { for (auto &name_pair : var_map) { for (auto &version_pair : name_pair.second) { pending_vars[&version_pair.second] = version_pair.second.generated_op_ == nullptr; } } } for (auto &var : member_->dep_vars_) { pending_vars[var.get()] = var->generated_op_ == nullptr; } std::vector to_run; for (auto &op : member_->ops_) { if (op->inputs_.empty()) { // Special case, Op has no input. to_run.emplace_back(op.get()); } else { pending_ops.insert({op.get(), op->inputs_.size()}); } } std::unordered_map> fetched_vars; for (auto &fetch_var_name : fetch_tensors) { for (auto &var_map : member_->vars_) { auto it = var_map.find(fetch_var_name); if (it != var_map.end()) { fetched_vars[fetch_var_name].push_back(&it->second.rbegin()->second); } } } std::vector fetch_ops; for (size_t i = 0; i < fetch_tensors.size(); ++i) { auto &var_name = fetch_tensors[i]; auto &vars = fetched_vars[var_name]; fetch_ops.emplace_back(&fetched_data, i, &member_->local_scopes_); FetchOpHandle *op = &fetch_ops.back(); // FIXME: Use new device context for (auto &p : member_->places_) { op->dev_ctx_[p] = member_->fetch_dev_ctxs_.Get(p); } for (auto *var : vars) { op->AddInput(var); } dummy_vars.emplace_back(); auto *var = &dummy_vars.back(); op->AddOutput(var); pending_vars[var] = false; pending_ops.insert({op, op->inputs_.size()}); } for (auto *op : to_run) { member_->RunOp(use_event, pending_vars, op); } while (!pending_vars.empty()) { VarHandleBase *ready_var = nullptr; for (auto &pair : pending_vars) { if (pair.second.load(std::memory_order_acquire)) { ready_var = pair.first; } } if (ready_var == nullptr) { // FIXME use conditional var instead of busy wait. if (member_->exception_) { throw * member_->exception_; } continue; } pending_vars.erase(ready_var); to_run.clear(); for (auto *op : ready_var->pending_ops_) { auto &deps = pending_ops[op]; --deps; if (deps == 0) { to_run.emplace_back(op); } } for (auto *op : to_run) { pending_ops.erase(op); member_->RunOp(use_event, pending_vars, op); } } for (auto &fetch_op : fetch_ops) { fetch_op.WaitAndMergeCPUTensors(); } *member_->global_scope_->Var(fetched_var_name)->GetMutable() = fetched_data; } } // namespace framework } // namespace paddle