/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include "paddle/fluid/operators/collective/c_split_op.h" #include "paddle/fluid/operators/math/concat_and_split.h" #include "paddle/phi/backends/gpu/gpu_primitives.h" namespace paddle { namespace operators { static constexpr int64_t kNumCUDAThreads = 512; static constexpr int64_t kNumMaxinumNumBlocks = 4096; static inline int64_t NumBlocks(const int64_t N) { return std::min((N + kNumCUDAThreads - 1) / kNumCUDAThreads, kNumMaxinumNumBlocks); } template __global__ void SplitFromRank(const T* input, T* output, const int64_t rows, const int64_t columns, const int rank, const int nranks, const int64_t limit) { CUDA_KERNEL_LOOP_TYPE(i, limit, int64_t) { int64_t row = i / columns; int64_t col = i % columns; int64_t block = columns / nranks; int64_t start = block * rank; int64_t end = start + block; if (col >= start && col < end) { int64_t idx = block * row + col % block; output[idx] = input[i]; } } } template class CSplitOpCUDAKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto x = ctx.Input("X"); auto out = ctx.Output("Out"); int nranks = ctx.Attr("nranks"); int rank = ctx.Attr("rank"); auto place = ctx.GetPlace(); PADDLE_ENFORCE_GE(rank, 0, platform::errors::PreconditionNotMet( "The value of rank (%d) for c_split must be " "greater than or equal to 0.", rank)); PADDLE_ENFORCE_GE(nranks, 2, platform::errors::PreconditionNotMet( "The value of nranks (%d) for c_split must be " "greater than or equal to 2.", nranks)); PADDLE_ENFORCE_LT(rank, nranks, platform::errors::PreconditionNotMet( "The value of rank (%d) for c_split must be " "less than that of nranks (%d).", rank, nranks)); auto& dev_ctx = ctx.template device_context(); auto dims = x->dims(); auto dims_size = dims.size(); // final dim int64_t end_size = dims[dims_size - 1]; // remain dim auto remain_ddim = phi::slice_ddim(dims, 0, dims_size - 1); int64_t remain_numel = phi::product(remain_ddim); int64_t limit = x->numel(); int64_t blocks = NumBlocks(limit); int64_t threads = kNumCUDAThreads; dims[dims_size - 1] /= nranks; out->mutable_data(dims, place); SplitFromRank<<>>(x->data(), out->data(), remain_numel, end_size, rank, nranks, limit); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; namespace plat = paddle::platform; PD_REGISTER_STRUCT_KERNEL(c_split, GPU, ALL_LAYOUT, ops::CSplitOpCUDAKernel, float, double, int, int64_t, plat::float16) {}