# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import contextlib import unittest import numpy as np import paddle.fluid as fluid from paddle.fluid import core from paddle.fluid.layers.nn import FC @contextlib.contextmanager def new_program_scope(): prog = fluid.Program() startup_prog = fluid.Program() scope = fluid.core.Scope() with fluid.scope_guard(scope): with fluid.program_guard(prog, startup_prog): yield class MyLayer(fluid.imperative.PyLayer): def __init__(self): super(MyLayer, self).__init__() def forward(self, inputs): x = fluid.layers.relu(inputs[0]) self._x_for_debug = x return [fluid.layers.elementwise_mul(x, x)] class MLP(fluid.imperative.PyLayer): def __init__(self): super(MLP, self).__init__() self._fc1 = FC(3, fluid.ParamAttr( initializer=fluid.initializer.Constant(value=0.1))) self._fc2 = FC(4, fluid.ParamAttr( initializer=fluid.initializer.Constant(value=0.1))) def forward(self, inputs): x = self._fc1(inputs[0]) x = self._fc2(x) x = fluid.layers.reduce_sum(x) return x class TestImperative(unittest.TestCase): def test_layer(self): with fluid.imperative.guard(): cl = core.Layer() cl.forward([]) l = fluid.imperative.PyLayer() l.forward([]) def test_layer_in_out(self): np_inp = np.array([1.0, 2.0, -1.0], dtype=np.float32) with fluid.imperative.guard(): l = MyLayer() x = l(np_inp)[0] self.assertIsNotNone(x) dy_out = x._numpy() x._backward() dy_grad = l._x_for_debug._gradient() with new_program_scope(): inp = fluid.layers.data( name="inp", shape=[3], append_batch_size=False) l = MyLayer() x = l(inp)[0] param_grads = fluid.backward.append_backward( x, parameter_list=[l._x_for_debug.name])[0] exe = fluid.Executor(fluid.CPUPlace()) static_out, static_grad = exe.run( feed={inp.name: np_inp}, fetch_list=[x.name, param_grads[1].name]) self.assertTrue(np.allclose(dy_out, static_out)) self.assertTrue(np.allclose(dy_grad, static_grad)) def test_mlp(self): np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32) with fluid.imperative.guard(): mlp = MLP() out = mlp(np_inp) dy_out = out._numpy() out._backward() dy_grad = mlp._fc1._w._gradient() with new_program_scope(): inp = fluid.layers.data( name="inp", shape=[2, 2], append_batch_size=False) mlp = MLP() out = mlp(inp) param_grads = fluid.backward.append_backward( out, parameter_list=[mlp._fc1._w.name])[0] exe = fluid.Executor(fluid.CPUPlace()) exe.run(fluid.default_startup_program()) static_out, static_grad = exe.run( feed={inp.name: np_inp}, fetch_list=[out.name, param_grads[1].name]) self.assertTrue(np.allclose(dy_out, static_out)) self.assertTrue(np.allclose(dy_grad, static_grad)) if __name__ == '__main__': unittest.main()