// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/prelu_grad_kernel.h" #include "paddle/phi/backends/xpu/enforce_xpu.h" #include "paddle/phi/core/kernel_registry.h" namespace phi { template void PReluGradKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& alpha, const DenseTensor& out_grad, const std::string& data_format, const std::string& mode, DenseTensor* x_grad, DenseTensor* alpha_grad) { using XPUType = typename XPUTypeTrait::Type; const T* x_ptr = x.data(); const T* alpha_ptr = alpha.data(); const T* out_grad_ptr = out_grad.data(); T* x_grad_ptr = dev_ctx.template Alloc(x_grad); T* alpha_grad_ptr = dev_ctx.template Alloc(alpha_grad); auto x_dim = x.dims(); auto x_rank = x_dim.size(); std::vector x_shape(x_rank); for (int i = 0; i < x_rank; i++) { x_shape[i] = x_dim[i]; } auto alpha_dim = alpha.dims(); auto alpha_rank = alpha_dim.size(); std::vector alpha_shape(alpha_rank); for (int i = 0; i < x_rank; i++) { alpha_shape[i] = alpha_dim[i]; } // mode = 0: channel_nchw, slope_shape = {c}, default. meanwhile, xhsape = {n, // c, h, w} // mode = 1, channel_nhwc, slope_shape = {c}, meanwhile, xhsape = {n, h, w, c} // mode = 2, elementwise, slope_shape = {c*h*w} // mode = 3, single slope, slope_shape = {1} int xpu_mode = 0; if (mode == "channel") { if (data_format == "NCHW") { xpu_mode = 0; } else { // NHWC xpu_mode = 1; } } else if (mode == "element") { xpu_mode = 2; } else { xpu_mode = 3; } int r = xpu::prelu_grad( dev_ctx.x_context(), reinterpret_cast(x_ptr), reinterpret_cast( out_grad_ptr), /* const T* y, not used in xpu kernel */ reinterpret_cast(alpha_ptr), reinterpret_cast(out_grad_ptr), reinterpret_cast(x_grad_ptr), reinterpret_cast(alpha_grad_ptr), x_shape, xpu_mode); PADDLE_ENFORCE_XDNN_SUCCESS(r, "prelu_grad"); } } // namespace phi PD_REGISTER_KERNEL(prelu_grad, XPU, ALL_LAYOUT, phi::PReluGradKernel, float, phi::dtype::float16) {}